留学群

目录

考研复习 2014考研数学二大纲——各部分考试内容及要求

字典 |

2013-09-20 12:23

|

【 liuxuequn.com - 考研答案 】

    考试科目:高等数学、线性代数

  考试形式和试卷结构

  一、试卷满分及考试时间

  试卷满分为150分,考试时间为180分钟。

  二、答题方式

  答题方式为闭卷、笔试。

  三、试卷内容结构

  高等教学  约78%

  线性代数  约22%

  四、试卷题型结构

  单项选择题 8小题,每小题4分,共32分

  填空题 6小题,每小题4分,共24分

  解答题(包括证明题) 9小题,共94分

  微积分

  一、函数、极限、连续

  考试内容

  函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

  数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:

  极限

  极限

  函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

  考试要求

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2.了解函数的有界性、单调性、周期性和奇偶性。

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。

  6.掌握极限的性质及四则运算法则。

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  二、一元函数微分学

  考试内容

  导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径

  考试要求

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3.了解高阶导数的概念,会求简单函数的高阶导数。

  4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。

  6.掌握用洛必达法则求未定式极限的方法。

  7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  截图

  三、一元函数积分学

  考试内容

  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用

  考试要求

  1.理解原函数的概念,理解不定积分和定积分的概念。

  2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。

  3.会求有理函数、三角函数有理式和简单无理函数的积分。

  4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

  5.了解反常积分的概念,会计算反常积分。

  6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

  四、多元函数积分学

  考试内容

  二重积分与三重积分的概念、性质、计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式 平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用

  考试要求

  1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。

  2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。

  3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

  4.掌握计算两类曲线积分的方法。

  5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数。

  6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分。

  7.了解散度与旋度的概念,并会计算。

  8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。

  五、常微分方程

  考试内容

  常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程的简单应用

  考试要求

  1.了解微分方程及其阶、解、通解、初始条件和特解等概念。

  2.掌握变量可分离的微分方程及一阶线性微分方程的解法。

  3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。

  4.会用降阶法解下列形式的微分方程:

  5.理解线性微分方程解的性质及解的结构。

  6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

  7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。

  8.会解欧拉方程。

  9.会用微分方程解决一些简单的应用问题。

  线性代数

  一、行列式

  考试内容

  行列式的概念和基本性质 行列式按行(列)展开定理

  考试要求

  1.了解行列式的概念,掌握行列式的性质。

  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。

  二、矩阵

  考试内容

  矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算

  考试要求

  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。

  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。

  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

  4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

  5.了解分块矩阵及其运算。

  三、向量

  考试内容

  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法

  考试要求

  1.理解n维向量、向量的线性组合与线性表示的概念。

  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。

  3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。

  4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系。

  5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。

  四、线性方程组

  考试内容

  线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解

  考试要求

  l.会用克拉默法则。

  2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

  3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。

  4.理解非齐次线性方程组解的结构及通解的概念。

  5.掌握用初等行变换求解线性方程组的方法。

  五、矩阵的特征值和特征向量

  考试内容

  矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵

  考试要求

  1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。

  2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。

  3.掌握实对称矩阵的特征值和特征向量的性质。


考研大纲汇总 考研英语大纲 考研政治大纲 考研数学大纲 考研专业课大纲

  想了解更多考研答案网的资讯,请访问: 考研答案

本文来源:https://www.liuxuequn.com/a/1600329.html
考研院校库(挑大学·选专业)
院校搜索
专业查询
延伸阅读
昨天公布的答案不是很详细,今天小编为大家提供2019年考研数学一真题及答案已公布,希望能帮助大家了解数学考试的情况,祝你天天开心!2019年考研数学一真题及答案已公布2019考研数
2018-12-24
2019年12月23日,考研大部分考试科目已经结束,小编为大家提供2019年考研真题及答案公布情况,考研政治、考研管理类联考数学、考研英语一、考研英语二、考研数学一二三真题及答案已
2018-12-23
2019年考研英语终于画上圆满的句号,小编为大家提供2019考研英语一真题及答案解析,赶紧和小编一起来看看答案解析吧!祝你心想事成!2019考研英语一真题及答案解析小编精心为您推荐
2018-12-23
2019年考研管理类联考数学终于结束,小编为大家提供2019考研管理类联考数学真题及答案,一起来看看你可以考多少分吧!2019考研管理类联考数学真题及答案来源:文都教育小编精心为您
2018-12-23
2019考研政治真题及答案已公布,你考得怎么样呢?一起来看看考研政治真题及答案吧!希望大家都能考出好的成绩!2019考研政治真题及答案已公布[page]来源:万学海文小编精心为您推
2018-12-23
2019年考研数学二考试已经结束了,小编为大家提供2019考研数学二真题及答案,有时间的同学可以自己对一下答案,祝你考试成功!2019考研数学二真题及答案小编精心为您推荐:2019
2018-12-23
2019年考研已结束,考研数学答案已公布!小编为大家提供2019考研数学真题及答案汇总,考研数学一、二、三真题及答案已公布,请点击查看!2019考研数学真题及答案汇总 1
2018-12-24
今天考研大部分考试科目都已考完,小编为大家提供2019考研数学三真题及答案,大家可以好好对对答案,看看自己能打多少分?2019考研数学三真题及答案小编精心为您推荐:2019考研真题
2018-12-23
2019年考研数学考试在12月23日上午已经结束,小编为大家提供2019考研数学答案,考研数学的同学,赶紧来对一下答案吧!祝你考试成功!2019考研数学一答案2019考研数学二答案
2018-12-23
2019年考研英语考试终于结束,你是否在焦急的盼望答案早点出来呢?小编为大家提供2019考研英语二真题及答案解析,一起来看看吧!2019考研英语二真题及答案解析小编精心为您推荐:2
2018-12-23