高等数学是考研数学内容最多的一部分,在数一和数三中,高数部分占总分的56%,在数二中,高数部分占78%,所以高等数学对总体成绩的高低也就显得尤为重要了。》》考研数学复习指导
下面就如何复习考研数学中的高等数学部分给广大考生以下建议:
首先,考生们要明确的是考研数学主要是考根底,包括基本概念、基本理论、基本运算等,假如概念、基本运算不太清晰,运算不太纯熟那你肯定是考不好的。
高数的根底应着重放在极限、导数、不定积分、当然还有定积分、一元微积分的应用,还有中值定理、多元函数微积分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。
高等数学在复习过程中考生们要注意以下几点:
第一:要明确考试重点,充分把握重点。
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
第三:关于积分部分
定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。
充分把握住这些重点,根据自己的情况有针对性的复习会达到很不错的效果。相信经过有计划有目标的复习,每个考生都可以使自己的综合解题能力有一个质的提高,从而在最后的考试中考出好的成绩。
考研大纲 | 考研经验 | 考研真题 | 考研答案 | 考研院校 | 考研录取 |