留学群

目录

人教版高二数学上册必修3《基本算法语句》教案

【 liuxuequn.com - 高中教案 】

  人教版高二数学上册必修3《基本算法语句》教案

  本章教材分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.

  本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.

  在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.

  本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:

  (1)知识间的联系;

  (2)数学思想方法;

  (3)认知规律.

  本章教学时间约需12课时,具体分配如下(仅供参考):

  1.1.1 算法的概念 约1课时

  1.1.2 程序框图与算法的基本逻辑结构 约4课时

  1.2.1 输入语句、输出语句和赋值语句 约1课时

  1.2.2 条件语句 约1课时

  1.2.3 循环语句 约1课时

  1.3算法案例 约3课时

  本章复习 约1课时

  1.1 算法与程序框图

  1.1.1 算法的概念

  整体设计

  教学分析

  算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为 了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.

  三维目标

  1.正确理解算法的概念,掌握算法的基本特点.

  2.通过例题教学,使学生体会设计算法的基本思 路.

  3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.

  重点难点

  教学重点:算法的含义及应用.

  教学难点:写出解决一类问题的算法.

  课时安排

  1课时

  教学过程

  导入新课

  思路1(情境导入)

  一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.

  思路2(情境导入)

  大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?

  答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.

  上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.

  思路3(直接导入)

  算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.

  推进新课

  新知探究

  提出问题

  (1)解二元一次方程组有几种方法?

  (2)结合教材实例 总结用加减消元法解二元一次方程组的步骤.

  (3)结合教材实例 总结用代入消元法解二元一次方程组的步骤.

  (4)请写出解一般二元一次方程组的步骤.

  (5)根据上述实例谈谈你对算法的理解.

  (6)请同学们总结算法的特征.

  (7)请思考我们学习算法的意义.

  讨论结果:

  (1)代入消元法和加减消元法.

  (2)回顾二元一次方程组

  的求解过程,我们可以归纳出以下步骤:

  第一步,①+②×2,得5x=1.③

  第二步,解③,得x= .

  第三步,②-①×2,得5y=3.④

  第四步,解④, 得y= .

  第五步,得到方程组的解为

  (3)用代入消元法解二元一次方程组

  我们可以归纳出以下步骤:

  第一步,由①得x=2y-1.③

  第二步,把③代入②,得2(2y-1)+y=1.④

  第三步,解④得y= .⑤

  第四步,把⑤代入③,得x=2× -1= .

  第五步,得到方程组的解为

  (4)对于一般的二元一次方程组

  其中a1b2-a2b1≠0,可以写出类似的求解步骤:

  第一步,①×b2-②×b1,得

  (a1b2-a2b1)x=b2c1-b1c2.③

  第二步,解③,得x= .

  第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④

  第四步,解④,得y= .

  第五步,得到方程组的解为

  (5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.

  在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.

  现在,算法通常可以编成计算机程序,让计算机执行并解决问题.

  (6)算法的特征:①确定性:算法的每一步都 应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.

  (7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.

  应用示例

  思路1

  例1 (1)设计一个算法,判断7是否为质数.

  (2)设计一个算法,判断35是否为质数.

  算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.

  算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.

  第二步,用3除 7,得到余数1.因为余数不为0,所以3不能整除7.

  第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.

  第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.

  第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.

  (2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.

  第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.

  第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.

  第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.

  点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.

  变式训练

  请写出判断n(n >2)是否为质数的算法.

  分析:对于任意的整数n( n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判 断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.

  这个操作一直要进行到i的值等于(n-1)为止.

  算法如下:第一步,给定大于2的整数n.

  第二步,令i=2.

  第三步,用i除n,得到余数r.

  第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.

  第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.

  例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.

  分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.

  “二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)•f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)•f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.[来源:学&科&网Z&X&X&K]

  解:第一步,令f(x)=x2-2,给定精确度d.

  第二步,确定区间[a,b],满足f(a)•f(b)<0.

  第三步,取区间中点m= .

  第四步,若f(a)•f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].

  第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.

  当d=0.005时,按照以上算法,可以得到下表.

  a b |a-b|

  1 2 1

  1 1.5 0.5

  1.25 1.5 0.25

  1.375 1.5 0.125

  1.375 1.437 5 0.062 5

  1.406 25 1.437 5 0.031 25

  1.406 25 1.421 875 0.015 625

  1.414 062 5 1.421 875 0.007 812 5

  1.414 062 5 1.417 968 75 0.003 906 25

  于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求 的近似值的一个算法.

  点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如 申请出国有一系列的先后手续,购买物品也有相关的手续……

  思路2

  例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不 少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.

  分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.

  解:具体算法如下:

  算法步骤:

  第一步:人带两只狼过河,并自己返回.

  第二步:人带一只狼过河,自己返回.

  第三步:人带两只羚羊过河,并带两只狼返回.

  第四步:人带一只羊过河,自己返回.

  第五步:人带两只狼过河.

  点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.

  例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷 茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.

  分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.

  解:算法一:

  第一步,洗刷水壶.

  第二步,烧水.

  第三步,洗刷茶具.

  第四步,沏茶.

  算法二:

  第一步,洗刷水壶.

  第二步,烧水,烧水的过程当中洗刷茶具.

  第三步,沏茶.

  点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.

  例3 写出通过尺轨作图确定线段AB一个5等分点的算法.

  分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.

  解:算法分析:

  第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.

  第二步,在射线上任取一个不同于端点A的点C,得到线段AC.

  第三步,在射线上沿AC的方向截取线段CE=AC.

  第四步,在射线上沿AC的方向截取线段EF=AC.

  第五步,在射线上沿AC的方向截取线段FG=AC.

  第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.

  第七步,连结DB.

  第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.

  点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.

  知能训练

  设计算法判断一元二次方程ax2+bx+c=0是否有实数根.

  解:算法步骤如下:

  第一步,输入一元二次方程的系数:a,b,c.

  第二步,计算Δ=b2-4ac的值.

  第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.

  点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.

  拓展提升

  中国网通规定:拨打市内电话时, 如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.

  解:算法分析:

  数学模型实际上为:y关于t的分段函数.

  关系式如下:

  y=

  其中[t-3]表示取不大于t-3的整数部分.

  算法步骤如下:

  第一步,输入通话时间t.

  第二步,如果t≤3,那么y=0.22;否则判断t∈Z 是否成立,若成立执行

  y=0.2+0.1×(t-3);否则执行y=0.2+0.1×([t-3]+1).

  第三步,输出通话费用c.

  课堂小结

  (1)正确理解算法这一概念.

  (2)结合例题掌握算法的特点,能够写出常见问题的算法.

  作业

  课本本节练习1、2.

  设计感想

  本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基 础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体 会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.

  教案设计频道小编推荐:高中数学教案 | 高二数学教案 | 高二数学教学计划

  教案设计频道小编推荐:高中数学教案 | 高二数学教案 | 高二数学教学计划

  想了解更多高中教案网的资讯,请访问: 高中教案

本文来源:https://www.liuxuequn.com/a/3017949.html
延伸阅读