相信很多数学不好的小伙伴都在想为什么想报考的专业都要考数学呢?那么哪些考研专业不考数学呢?下面是由留学群小编为大家整理的“不用考数学的研究生专业有哪些”,仅供参考,欢迎大家阅读。
不考数学的研究生专业
不用考数学的研究生专业有:哲学专业、法学专业、教育学专业、语言类专业、历史学专业、理学专业、医学专业、管理学专业、艺术学专业。
上述专业不用考数学的原因
语言类专业的人上了大学就再也不会碰到数学这个难题了。语言类专业一般比较常见的有:汉语言专业、英语、新闻等。它们也被称为“文科生”,需要的是文化底蕴和文学素养,和数学几乎无缘,而且考研也是不用考的。
哲学类专业一般包括逻辑学、伦理学和宗教学,对数学的要求可谓是“零”。
法学主要是研究国家的法律文件,对数学要求很低,因此在研究生考试中,法学的研究生不考数学。
教育学主要侧重教学研究,应用到数学的机会不多,要求也不高,因此在研究生阶段对数学没有更高的要求,所以就没把数学作为测试科目。
艺术类专业不用考数学的主要是体育、美术、舞蹈等。
历史类专业也是偏文科的专业,特别是研究生阶段,重点在于对于历史的细节的研究,在研究过程中用到高等数学的机会也不多,因此就不要求花时间去掌握数学这门学科了。
医学类专业广为人知的就是临床医学和基础医学两个专业,医学也是考研党比较热衷的一门学科,并且它也是一门考研不用考数学的学科。
管理学学科门类,包含管理科学与工程、工商管理、农林经济管理、公共管理、图书馆、情报与档案管理5个一级学科,14个二级学科,这些也不要求考数学。
拓展阅读:考研数学5大难点
1.函数连续与极限
极限是高数的基本工具,是三大运算之一。求极限是考研试卷中常考的题型,是考试的重点。要求考生对于极限的概念以及求极限的基本方法掌握到位。在这一部分,还有两个重要的概念,即无穷小和间断点,是考试中常考的知识点,此处是我们复习的重点。常考的题型有:无穷小阶的比较,无穷小和极限的结合,间断点类型的判断。
2.一元函数微分学
求导是高数的第二大运算,要求对于各种类型函数的求导过关,也是为后面的多元函数求偏导打下基础。这一部分需要注意两个概念:导数和微分,要求理解导数的定义以及可导的充分必要条件。此外,还有导数的应用,这是内容比较多的一部分,是考试的重点,但不是难点,如函数的单调性、凹凸性、渐近线、拐点和方程根的判别等。这一部分还有一个难点,就是中值定理的相关证明题,不过这部分题目解题思路不太灵活,掌握常见的技巧和方法足可应对。
3.多元函数微分学
多元函数连续、可偏导及可微的定义,以及三者之间的关系要准确区分。多元函数复合函数和隐函数求偏导和求全微分一定要过关。这些都是考试的重点。
4.多元函数积分学
数二和数三同学仅仅考查二重积分的计算,这是考试的重点,是每年必考的,常见题型有二重积分的基本计算,选择合适的坐标系法和积分次序,有必要时进行交换坐标系和积分次序等等,这些都是基本的运算。对于数一的同学,在以上基础上,还需要学习曲线、曲面积分的计算和三重积分的计算。尤其需要注意的是第二类曲线积分和格林公式的结合,三维曲线积分和斯托克斯公式的结合,第二类曲面积分和高斯公式的结合,这些是出大题的地方。
5.微分方程
掌握考纲中要求掌握的几类方程的解法,如可分离变量方程、齐次方程、一阶线性微分方程、可降阶微分方程(数三不要求)、二阶常系数微分方程。需要注意一下常系数线性方程的解的结构。此外,微分方程和变上限函数、多元函数微分学或实际问题,经常会出一些综合题。