留学群

目录

有理数教案范文4篇

字典 |

2023-05-15 09:50

|

推荐访问

有理数教案

【 liuxuequn.com - 实用资料 】

  对于刚刚加入学校的教师来说,教案和课件是非常重要的,但是必须确保教案和课件的内容充足。制定教案需要根据教师的教学风格和特点进行设计。我们为大家准备了“有理数教案”的相关内容,希望它能给您带来新的视野。为了更方便地阅读,记得收藏本文哦!

有理数教案【篇1】

  一、课题 §2.9有理数的除法

  二、教学目标

  1.使学生理解有理数倒数的意义;

  2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;

  3.培养学生观察、归纳、概括及运算能力.

  三、教学重点和难点

  重点:有理数除法法则.

  难点:(1)商的符号的确定.

  (2)0不能作除数的理解.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  启发式教学

  六、教学过程

  (一)、从学生原有认知结构提出问题

  1.叙述有理数乘法法则.

  2.叙述有理数乘法的运算律.

  3.计算:

  (1)3×(-2); (2)-3×5; (3)(-2)×(-5).

  (二)、导入新课

  因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;

  同样-3×5=-15,解简易方程-3x=-15,得x=5.

  在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.

  三、讲授新课

  1.有埋数的倒数

  0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)

  提问:怎样求一个数的倒数?

  答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分

  数再求倒数.

  什么性质

  所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.

  这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.

  2.有理数除法法则

  利用有理数倒数的概念,我们进一步学习有理数除法.

  因为(-2)×(-4)=8,所以8÷(-4)=-2.

  由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即

  除以一个数等于乘以这个数的倒数.

  0不能作除数.

  例1 计算:

  课堂练习

  (1)写出下列各数的倒数:

  (2)计算:

  3.有理数除法的符号法则

  观察上面的练习,引导学生总结出有理数除法的商的符号法则:

  两数相除,同号得正,异号得负.

  掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:

  两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何一个不为0的数,都得0.

  ≠0).利用除法法则可以化简分数.

  例2 化简下列分数:

  例3 计算:

  (4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

  (四)、小结

  1.指导学生看书,重点是除法法则.

  2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.

  七、练习设计

  习题2.12 1、2、3、4、5、6题

  八、板书设计

  §2.9有理数的除法

  (一)知识回顾 (三)例题解析 (五)课堂小结

  例1、例2

  (二)观察发现 (四)课堂练习 练习设计

  ,七年级数学上册北师大版2.9有理数的除法教案

有理数教案【篇2】

  一、教学目标:

  知识目标:让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。

  能力目标:在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。

  情感目标:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。

  1、教学重点:

  有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。

  2、教学难点:

  有理数的乘方符号法则的理解。

  二、说教学方法

  启发诱导式、实践探究式。

  三、说教学设计

  (一)创设问题、引入新知

  a(1)边长为2的正方形的面积是多少?

  (2)棱长为2的正方体的体积是多少?

  (3)学生活动:

  我们把一张纸对折后裁开,可以裁成几张纸?对折两次后可以裁成几张纸?对折三次呢?

  猜想对折10次后可以裁成几张纸?

  对折20次后的纸张的厚度比我们大唐发电厂的烟囱的高度还高,你信吗?

  学完这节课后,你就知道结果了。

  (让学生思考回答、教师引导、归纳同时板书问题答案)

  学习新知:

  (二)、自主学习新知:

  1、阅读书了解什么是乘方?还有那些新的概念?

  2、同学们想一想?以上乘法与前面学习过乘法有什么不同?

  (让学生观察回答,教师引入乘方、幂、底数、指数的概念、归纳同时板书问题答案)

  板书:求n个相同因数的积的运算叫做乘方。

  乘方的结果叫做幂。

  一个数可以表示成这个数本身的一次方,指数1通常省略不写。

  3、提出问题:到目前为止,对有理数来说,我们学过的运算有哪些?分别是什么?运算结果叫什么?(让学生讨论交流回答,教师板书问题答案)。

  板书答案:

  运算:加、减、乘、除、乘方

  结果:和、差、积、商、幂

  4、检验学习:

  在这里,我设置了三组题,第一组学生组内完成,采用组内互检方式完成。

  第二三组题先由学生独立完成,在由组长检查,并让两名学生到黑板上展示交流,教师给予点评。

  (三)探究乘方的符号法则

  设置了四组习题探究规律:

  1、完成下面的计算:

  22= 32= 43 = 104=

  (-3)2= (-2)4= (-3)4=

  (-3)3= (-10)3= (-2)5=

  02= 03 = 04= 06=

  2、思考:根据上面计算的结果想一想:正数的幂的符号与指数有何关系;负数的幂的符号与指数有何关系?

  师生总结:正数的任何次幂都是正数;0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。

  板书结论:负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数,0的任何正整数次幂都是0

  (四)学习使用计算器计算乘方的方法。

  1、每组一个计算器,教师讲解,学生操作。

  2、解决引例折叠20次后纸张的厚度。如果一张纸的厚度为0.2毫米,试用计算器求出结果。

  (五)小结反思

  通过这节课的学习,你有什么收获?你还有什么疑惑?

  课堂检测、布置作业。

  (目的:为巩固本节所学的知识,了解学生掌握知识的情况及应用知识的能力。)

有理数教案【篇3】

  教学目标

  1、使学生了解加减统一为加法对简化计算所起的作用

  2、能灵活运用加法运算律进行有理数的加减混合运算

  3、培养学生观察、讨论、积极思维探索的能力

  4、激发学生对数学的兴趣,培养学生热爱数学的情感。

  教学重点、难点

  能灵活运用加法运算律进行有理数的加减混合运算

  教学过程

  一、设问题情况

  +(-1)-(-2)+(-3)-(-4)+(-5)-(-6)……(-50)

  鼓励学生发言、讨论交流

  1、出问题

  (1)如何解该?

  (2)如何将减号进行转变?

  三、新课讲授

  根据上题,我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法

  例:(-8)-(-10)+(-6)-(+4)如何统一成加号?

  省略加号如何表示?-8+10-6-4

  注:在一个和式里,通常把各个加数的刮号与它前面的加法省略不写

  如何读呢?

  按和式读做“负8,正0,负6负4的和”

  按运算意义读做负8加10减6减4

  例1、把(+1)+(-3)-(+2)-(-4)-(+6)写成省略加号的和的形式,并把它读出来。

  解:原式=(+1)+(-3)+(-2)+(+4)+(-6)

  =1-3-2+4-6

  学生板演,练习用两种方法读出

  例2、计算

  (1)-24+3.2-1.6+3.5+0.3

  (2)0-21+3-(-0.5)-(-6)-(+4)

  解(1)因为原式表示-24,3.2,-16,-3.5,0.3的和,所以可将加数适当交换位置,并作适当的结合进行计算,即

  -24+3.2-16-3.5+0.3

  =(-24-16)+(3.2+0.3)-3.5

  =-40+3.5-3.5

  =-40 .

  (2)0-21+3-(-0.5)-(-6)-(+4)

  =0+(-21)+(+3)+(+6)+(-4)

  =-21+3+6-4

  =(-21-4)+(3+6)

  =-25+9

  =-16

  提问:如何解?(多种方法)

  法一:按正常顺序来解(从左到右)

  法二:运用简便方法来解(加法交换律和结合律)

  问:为什么要用加法运算律?该如何灵活运用?

  如何使得计算简便?

  1、正数和正数放在一起,负数和负数放在一起

  2、互为相反数的放在一起

  3、同分母的放在一起

  4、能凑整的放在一起

  四、练习

  1、把下列各式写成省略加号和的形式,并说出他们的两种读法

  (1)(-12)-(+8)+(-6)-(-5)

  (2)(+3.7)-(-2.1)-1.8+(-2.6)

  2、计算

  (1)-30-11-(-10)+(-12)+18

  (2)3 1/2-(-21/4)+(-1/3)-0.25+(+1/6)

  五、小结:

  1、加减法统一为加法

  2、进行有理数加减混合运算的注意点

  (1)互为相反数放在一起

  (2)同分母的放在一起

  (3)能凑整的放在一起

  (4)小数与小数放在一起,整数与正数放在一起(等等)

  六、作业:P47习题2.8(2、3)

有理数教案【篇4】

  第3章有理数的运算

  3.1有理数的加法与减法

  第2课时

  教学目标

  1.能运用加法运算律简化加法运算.

  2.理解加法运算律在加法运算中的作用,适当进行计算以及训练.

  3.培养学生的观察能力和思考能力,经历对有理数的运算,领悟解决问题应选择适当的方法,在数学学习中获得成功的体验。

  教学难点

  如何运用加法运算律简化运算

  知识重点

  灵活运用加法运算律

  教学过程(师生活动)

  设计原则

  复习知识

  引入课题

  通过展示四道题目,让学生分析是运用哪条有理数加法法则,进而进一步总结复习有理数加法法则。

  师提问:有理数加法运算能不能更简便呢?我们这节课就来探讨一下。.

  (出示课题)有理数的加法运算律

  让学生感受到有理数的运算在实际中是很简单的,激发学生学习新知识的兴趣.

  分析问题

  探究新知

  1.让学生运用有理数加法法则自主运算.

  注意:符号的确定是由几种情况决定的①同号两数相加,取相同的符号.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号.

  2.观察四组算式中的加数和他们的和,提问:有什么发现?从加数的位置,和的角度探讨.

  3.通过练习和讨论,引导学生得出:

  交换律--两个有理数相加,交换加数的位置,和不变.

  用代数式表示:a+b=b+a.

  运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.

  4.两个运算律分别是交换律和结合律,在得出交换律的基础上,运用同样的推导方法进行归纳总结。

  (1)(小组合作)自主做题,将步骤和答案写出,并将答案在小组里订正.

  (2)交流汇报.从运算顺序,和的角度进行探讨.(各学习小组的汇报结果,用实物投影仪展示)

  (3)说一说运用的加法法则是什么?(①运算顺序,②和)指导学生用自己的语言进行归纳.

  (4)在学生归纳的基础上,教师出示有理数加法运算律:结合律.

  结合律--三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变.

  用代数式表示:a+(b+c)=(a+b)+c

  (用投影仪展示)

  有理数加法交换律:

  1.两个数相加,交换加数的位置,和不变.

  2.三个数相加,先把前两个数相加,或者先把后两个数相加,它们的和不变.

  让学生在情境中感受到有理数运算使用的两个运算律,渗透分类讨论思想.

  教师需对学生进行相应,点拨、指导,引导学生对有理数相加运算时进行相应的步骤,体现教师的引领作用.

  ①交换律是两个加数相加,结合律是三个加数相加,那四个数相加或者更多的数相加也可以运用交换律和结合律.

  ②教师巡堂随时进行相关的指导,关注每一们学生及各个学习小组的活动情况,及时做好引导.

  解决问题

  解决问题(板书或用投影仪进行展示)

  例1计算:

  下列运用加法交换律的变形中,错误的是()

  A.30+20=20+30

  B.(-5)+(-13)=(-13)+(-5)

  C.(-37)+16=16+(-37)

  D.10+(-20)=20+(-10)

  教师板演,让学生说出加法交换律的应用方法.

  例2计算:

  (+23)+(?12)+(+7)

  例3计算:

  (?1/3)+(?5/2)+(?2/3)+(+1/2)

  引导学生,让学生明确做有理数的加法应怎样运用两条运算律:(1)加法交换律;(2)加法结合律.

  学生活动:请学生总结做题过程中运用哪些方法可以简化运算。

  注意点:(1)学会运用运算律解题.(2)教师板演的例题要完整体现过程,并要求学生在刚开始学的时候要把中间的过程写完整.(3)体现化归思想.(4)这里增加了两道题目,要是让学生能较为熟练地运用运算律进行计算.

  拓宽学生视野,让学

  生体会到数学与实践的密切联系。

  课堂练习

  导学案上的练习题

  小结与作业

  课堂小结

  通过这一节课的学习,你有何收获?(让学生口答)

  本课作业

  必做题:阅读教科书第47页,教科书第49页练习题1、2题。

  本课教育评注(课堂设计原则,实际教学效果及改进设想)

  教后反思:本节课的难点是运用交换律和结合律进行加法运算,学生在学习过程中很容易总结出来,但是同时运用两个规律解题就不知道怎么来运算。要引导学生从做题过程中总结几种方法,课下多加练习进行巩固。

  想了解更多实用资料网的资讯,请访问: 实用资料

本文来源:https://www.liuxuequn.com/a/4858337.html
延伸阅读
重阳节活动的总结【篇1】今年重阳节期间,市老龄系统以“弘扬敬老爱老传统美德、共享健康快乐和谐生活”为主题,周密安排,精心组织,广泛开展了一系列形式多样、丰富多彩的庆祝活动,让老年人
2023-05-15
点钞大赛的策划书(篇1)为配合学院科技文化周活动,促进我班学风建设,提高同学们学习会计技能知识的热情,进一步推广和加强点钞技能水平,激发同学们对会计实践技能的兴趣和热情,特举办此次
2023-05-15
大学生寒假社会活动实践报告【篇1】在长长的假期中,除了休息和学习外,开展丰富多彩的假期社会实践活动,不仅可以丰富生活,增长见识,开拓视野,还可以了解社会,学习本领,增强社会责任感。
2023-05-15
振奋人心的话语能够激励我们创造不同于现在的未来,为了鼓舞失落的朋友,也需要准备一些励志的句子。你最喜欢哪一句励志的话语,能够让你勇往直前呢?本文为您介绍《决心励志句子》,仅供参考!
2023-05-15
我们的感情是否真的没有止境呢?我感到十分惶恐。你对我这么好,让我感到无比幸福,但我时常担心这样好的事情不会一直持续下去。然而,我真的非常想和你步入婚姻的殿堂,一直到永远。在内心深处
2023-05-15
在学习数学的基础知识时我们就会看到一些关于有理数和无理数的内容,老师们会教给我们相关的知识,但还是会有很多人分不清,可以在留学群上面去搜索一下有理数和无理数的区别等的内容。有理
2022-04-12
留学群编辑收集并整理了“有理数的减法教学反思范文”。一名爱岗敬业的教师要充分考虑学生的理解性,身为教育工作者,常常被要求在课前准备好教案。教案有助于教师培养自己的逻辑思考能力。
2023-02-26
为后续课堂工作做准备,是教师所必须的。教师的教案就好比战士手里的宝剑,是他们在职业生涯上的重要工具和伙伴,一篇好的教案需要从哪方面开始写起呢?以下是编辑为大家整理的“有理数加法的教
2023-04-25
无理数和有理数的概念是什么呢?感兴趣的小伙伴快来和小编一起看看吧。下面是由留学群小编为大家整理的“无理数和有理数的概念是什么”,仅供参考,欢迎大家阅读。无理数和有理数的概念有理
2021-08-12
教师甘为学生进步的阶梯。教师应该以认真的态度,对待教案的编写。教案可以帮助教师把控课堂节奏,教案的书写包括哪些技巧呢?为此,小编特意呈上“有理数的减法教学反思简短”,为防遗忘,建议
2022-12-09