留学群

目录

有理数的加法课件

字典 |

2023-07-04 16:31

|

【 liuxuequn.com - 实用资料 】

  在这篇文章中,我们将深入探讨有关"有理数的加法课件"的相关话题。作为教师,编写教案和课件是必不可少的任务,因此在撰写时切勿草率。一个经过精心制作的教案能够引导学生主动学习。我建议你收藏并分享给其他有需要的朋友!

有理数的加法课件【篇1】

  教学目标:

  1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

  2、培养学生观察、比较、归纳及运算能力。

  重点:有理数加法运算律及其运用。

  重点:灵活运用运算律

  教学过程:

  一、创设情境,引入新课

  1、小学时已学过的加法运算律有哪几条?

  2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

  3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;

  (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

  二、讲授新课

  教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?

  (学生回答省略)

  师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

  讲解例3

  教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)

  三、巩固知识

  教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?

  师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。

  四、总结

  本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

  五、布置作业

有理数的加法课件【篇2】

  一. 教材的地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。二.教学目标 1、认知目标:

  (1)理解有理数加法的意义;

  (2)理解并掌握有理数加法的法则; (3)应用有理数加法法则进行准确运算; 2、 能力目标:

  (1)培养学生准确运算的能力; (2)培养学生归纳总结知识的能力; 3、情感目标:

  (1)通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造。 (2)体会有理数加法的数形思想。

  三.教学重点、难点:

  整节课都是围绕着有理数加法法则进行的,因此根据《教学大纲》的要求,本节课的重点是:有理数加法法则的理解与运用。突破策略:?利用多媒体手段,借助于动画演示,化抽象为具体.?讲清楚探究有理数加法法则的方法和过程。由于学生第一次接触带有符号的两个数

  相加,必须克服小学里长期形成的算术加法的思维定势的影响,特别是异号两数相加的符号和绝对值因此我确定本节课的难点是:异号两数相加加法法则的理解和应用。突破策略;?精选各种有趣的题型,让学生通过训练,尝试成功. ?利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。

  教学方法

  我在本节课主要采用“引导——发现教学法”,并借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当主角,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具多媒体 ,让学生在多媒体演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  在整个教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  学习方法

  七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。观察能力,记忆能力和想象能力也随着迅猛发展。他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。所以在教学中我抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。

  采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。

  教学过程

  《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。

有理数的加法课件【篇3】

  【教学目标】

  1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。

  2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。

  3.掌握有理数加法法则,并能准确地进行有理数加法运算。

  【学习重点、难点】

  重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;

  难点:异号两数如何相加的法则。

  【学习过程】

  一、 预习自学:

  1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?

  2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?

  3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?

  4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?

  5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?

  6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?

  请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)

  二、 教师点拨

  知识点一:引导学生对前面的七个加法运算进行合理的分类

  同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

  (+5)+(-5)=______

  一数与零相加: (-5)+0=______;

  知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?

  结论:有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  三.例题精讲;例1(学生自学,教师示范。注意解题步骤)

  四、课堂练习;36页随堂练习与习题(小组展示交流)

  五、当堂检测;

  1.用生活中的事例说明下列算是的意义,并计算出结果:

  (-2)+(-3);(-3)+2

  2.有理数加法法则:

  绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的'绝对值较小的绝对值. 互为相反数的两个数相加得.

  3.计算:(+15)+(-7);(-39)+(-21);

  (-37)+22;(-3)+(+3)

有理数的加法课件【篇4】

  尊敬的各位评委老师:

  大家好!

  我是来自洋后学校的数学教师王金今天我说课的题目是有理数加法运算律,这节课选自人教版七年级上册第一章第三节的内容。根据新课改新理念,围绕努力实现“用好教材”,而不是传统教学中的“教教材”,我将从以下五个环节逐一进行阐述我对于本节课的教学设计:

  一、教学背景分析

  1、教材的地位和作用

  本节教材是初中数学七年级上册的内容,是初中数学的重要内容之一。一方面,这是在学习了有理数加法的基础上,对有理数加法运算的进一步深入和拓展;另一方面,又为学习有理

  数混合运算等知识奠定了基础。因此本节课在教材具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了加法以及正有理数的加法运算律,对有理数加法运算已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于引入负数之后加法运算律的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:了解加法交换律,结合律的内容,运用运算律进行简化加法运算,运用有理数加法解决问题。

  难点确定为:运用有理数加法解决问题

  二、教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1。知识与技能目标:

  (1)正确理解加法交换律,结合律,能用字母表示运算律的内容;

  (2)能运用运算律较熟练的进行加法运算。

  2。过程与方法目标:

  (1)体验加法交换律、结合律在实际运算中的应用;

  (2)能运用有理数的加法解决问题。

  3。情感态度与价值目标:通过思考、观察、比较等体验数学的创新思维和发散思维,激发学生的学习兴趣。

  三、教学方法分析

  数学是一门培养和发展人的思维的重要学科。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我设计了以下四种教法:

  〖情境法〗创设情境来激发学生的学习兴趣,体会本节课的重要性;

  〖探究法〗引导学生探究在求解两个加数的和以及调换加数位置后的值有什么变化,接着继续探究结合律的规律;

  〖演示法〗演示具体的简化运算过程;

  〖讨论法〗通过探究、演示、讨论得出并领会a+b=b+a,(a+b)+c=a+(b+c)所表示的含义

有理数的加法课件【篇5】

  教学目的:

  经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。

  教学重点:

  有理数的加法法则

  教学难点:

  异号两数相加的法则

  教学教程:

  一、复习提问:

  1、如果向东走5米记作+5米,那么向

  西走3米记作__.

  2、已知a=-5,b=+3,

  ︱a︳+︱b︱=_

  已知a=-5,b=+3,

  ︱a︱-︱b︱=__

  -1012345678

  二、授新课

  小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向

  提问:这题有几种情况?

  小结:有以下四种情况

  (1)两次都向东走,

  (2)两次都向西走

  (3)先向东走,再向西走

  (4)先向西走,再向东走

  根据小结,我们再分析每一种情况:

  (1)向东走5米,再向东走3米,一共向东走了多少米?

  +5+3(+5)+(+3)=+8

  (2)向西走-5米,再向西走-3米,一共向东走了多少米?

  -5-3(-3)+(-5)=-8

  (3)先向东走5米,再向西走3米,两次一共向东走了多少米?

  +3+5(+5)+(-3)=2

  (4)先向西走5米,再向东走3米,两次一共向东走了多少米?

  -5+3(-5)+(+3)=-2

  下面再看两种特殊情况:

  (5)向东走5米,再向西走5米,两次一共向东走了多少米

  -5+5(+5)+(-5)=0

  (6)向西走5米,再向东走0米,两次一共向东走了多少米?

  -5(-5)+0=-5

  小结:总结前的六种情况:

  同号两数相加:(+5)+(+3)=+8

  (-5)+(-3)=-8

  异号两数相加:(+5)+(-3)=2

  (-5)+(+3)=-2

  (+5)+(-5)=0

  一数与零相加:(-5)+0=-5

  得出结论:有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加

  2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零

  3、一个数与零相加,仍得这个数

  例如:

  (-4)+(-5)(同号两数相加)

  解:=-()(取相同的符号)

  =-9(并把绝对值相加)

  (-2)+(+6)(绝对值不等的异号两数相加)

  解:=+()(取绝对值较大的符号)

  =+4(用较大的绝对值减去较小的绝对值)

  练习:

  口答:

  1、(-15)+(-32)=

  2、(+10)+(-4)=

  3、7+(-4)=

  4、4+(-4)=

  5、9+(-2)=

  6、(-0.5)+4.4=

  7、(-9)+0=

  8、0+(-3)=

  计算:

  (1)(-3)+(-9)(2)(-1/2)+(+1/3)

  解略

  练习:

  (1)15+(-22)=

  (2)(-13)+(-8)=

  (3)(-0·9)+1·5=

  (4)2·7+(-3·5)=

  (5)1/2+(-2/3)=

  (6)(-1/4)+(-1/3)=

  练习三:

  1、填空:

  (1)+11=27(2)7+=4

  (3)(-9)+=9(4)12+=0

  (5)(-8)+=-15(6)+(-13)=-6

  2、用“”号填空:

  (1)如果a>0,b>0,那么a+b0;

  (2)如果a

  (3)如果a>0,b|b|,那么a+b0;

  (4)如果a0,|a|>|b|,那么a+b0

  小结:

  1、掌握有理数的加法法则,正确地进

  行加法运算。

  2、两个有理数相加,首先判断加法类

  型,再确定和的符号,最后确定和的绝对值。

  作业:课本第38页2、3

  第40页1、2

有理数的加法课件【篇6】

  “有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.注重引导学生参与探索、归纳有理数加法法则的'过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。

  学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。

  1.知识与技能

  (1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。

  (2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。

  (3)能熟练进行整数加法运算,并能用运算律简化运算。

  2.过程与方法

  通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。

  3.情感与态度

  认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

  4.重点与难点

  会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。

  (一)创设问题情境首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。

  问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。

  (二)师生共同探究有理数加法法则

  之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:

  (1)答错3题时:

  (-4)+(-4)+(-4)=-12分

  (2)答对5题时:4+4+4+4+4=20分

  (3)答对3题,答错5题时,答对的3题与答错的3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出:加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数。

  (三)应用法则解决问题

  例1(教科书的例1)

  解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)

  =0(互为相反数的两个数相加得0)(4)0+(-2)

  =-2(一个数同0相加,仍得这个数)

  例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

  (5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。

  强调异号两数相加时符号的确定及绝对值的确定。

  (四)小结

  1.本节课你学到了什么?

  2.本节课你有什么感受?(由学生自己小结)

  (五)练习设计

  1、基础练习:

  教材36页知识技能1.计算

  (1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);

  (5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成

  数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。

  2、提升练习

  1.用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0

  2.已知如图:

  那么a+b ______0;

  a

  0

  b

  本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。

有理数的加法课件【篇7】

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一)重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  教学设计示例:

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、掌握有理数的减法法则。

  2、进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1);(2)-3+(-7);

  (3)-10+(+3);(4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

  【教法说明】

  1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到:

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3)。

  【教法说明】

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

有理数的加法课件【篇8】

  教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

  非常高兴,能有机会和同学们共同学习

  昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

  我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

  同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

  希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

  我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

  以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

  刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

  对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

  前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

  同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

  (1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?

  (2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

  (3) 一个数同0相加,其和有什么规律呢?(易得出结论)

  同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

  同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

  (活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

  同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

  看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

  通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

  同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

有理数的加法课件【篇9】

  【目标预览】

  知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

  2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。 数学思考:1、正确地进行有理数的加法运算;

  2、用数形结合的思想方法得出有理数加法法则。

  解决问题:能运用有理数加法解决实际问题。

  情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

  【教学重点和难点】

  重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。

  【情景设计】

  我们来看一个大家熟悉的实际问题:

  足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:

  (1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)

  (2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)

  这里,就需要用到正数与负数的加法。

  下面,我们利用数轴一起来讨论有理数的加法规律。

  【探求新知】

  一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

  (1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。

  两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

  利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

  (2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

  (3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

  (4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

  (5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

  (6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

  (7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

  总结:依次可得

  (2)(-5)+(-3)=-8②

  (3)5+(-3)=2③

  (4)3+(-5)=-2④

  (5)5+(-5)=0⑤

  (6)(-5)+5=0⑥

  (7)5+0=5或(-5)+0=-5⑦

  观察上述7个算式,自己归纳出有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数。

  【范例精析】

  例1计算下列算式的结果,并说明理由:

  (1)(+4)+(+7);(2)(-4)+(-7);

  (3)(+4)+(-7);(4)(+9)+(-4);

  (5)(+4)+(-4);(6)(+9)+(-2);

  (7)(-9)+(+2);(8)(-9)+0;

  (9)0+(+2);(10)0+0.

  学生逐题口答后,教师小结:

  进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

  =-(3+9)(和取负号,把绝对值相加)

  =-12.

  例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。

  解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

  三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;

  黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;

  蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;

  【一试身手】

  下面请同学们计算下列各题:

  (1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  全班学生书面练,四位学生板演,教师对学生板演进行讲评.

  【总结陈词】

  1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。

  2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

  【实战操练】

  1.计算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

  (4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

  (7)33+48;(8)(-56)+37.

  2.计算:

  (1)(-0.9)+(-2.7);(2)3.8+(-8.4);

  (3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

  3.计算:

  4*.用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

  5*.分别根据下列条件,利用|a|与|b|表示a与b的和:

  (1)a>0,b>0;(2) a<0,b<0;

  (3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理数的加法课件【篇10】

  第一课时

  三维目标

   一、知识与技能

  理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

   二、过程与方法

  引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

   三、情感态度与价值观

  培养学生主动探索的良好学习习惯。

  教学重、难点与关键

  1.重点:掌握有理数加法法则,会进行有理数的加法运算。

  2.难点:异号两数相加的法则。

  3.关键:培养学生主动探索的良好学习习惯。

   四、教学过程

  一、复习提问,引入新课

  1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?

  2.比较下列每对数的大小。

  (1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

  五、新授

  在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

  要解决这个问题,先要分别求出它们的`净胜球数。

  红队的净胜球数为:4+(-2);

  蓝队的净胜球数为:1+(-1)。

  这里用到正数与负数的加法。

  怎样计算4+(-2)呢?

  下面借助数轴来讨论有理数的加法。

  看下面的问题:

  一个物体作左右方向的运动,我们规定向左为负、向右为正。

  (1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数的加法课件【篇11】

  有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  ⑴了解有理数加法的意义。

  ⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。

  (3)运用有理数加法法则正确进行运算(主要是整数的运算)。

  2、过程与方法目标:

  ⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

  (2)在探索过程中感受数形结合和分类讨论的数学思想。

  3、情感态度与价值观目标:

  (1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

  (2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的`意识。

  (3)培养学生合作意识,体验成功,树立学习自信心。

  在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。

  新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);

  行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);

  省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。

  信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。

  同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。

  另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

  三、说学法:

  本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:

  第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的前提;

  第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;

  第三、范例讲解和随堂练习始终是学以至用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。

  四、说教学程序:

  本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)

  1、引入新知---新(创设新的问题情境)。

  今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。

  (1) 类比小学学习加法的“实物数数法”(1用一个 表示,-1用一个

  表示,那么2就用两个 表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。

  (2) 联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。

  在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:

  问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?

  在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。

  此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,

  为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。

  想了解更多实用资料网的资讯,请访问: 实用资料

本文来源:https://www.liuxuequn.com/a/4983085.html
延伸阅读
根据不同的内容和性质,我们需要制定不同种类的方案,这对我们接近成功、实现设定目标至关重要。因此,做事要有计划,制定方案成了我们必须完成的任务之一。在这篇“露营方案”的详细内容中,小
2023-07-04
本文以不同的角度和层面对“保管合同”进行了解读,欢迎您来品鉴。随着人民法律意识的普遍提高,口头合同无法得到法律保障,因为没有书面形式来提供证明。因此,融资租赁合同等合同必须以书面形
2023-07-04
为了追求最佳口感,我创作了这道名为“文明城创建述职报告”的美食。当我们遇到不熟悉的领域时,常常会感到写文档是一件令人头疼的事情。这时候,动手搜索相关的范文并从中借鉴一些优秀的内容,
2023-07-04
学校老师辞职申请书如何写篇1尊敬的校领导:您们好!很抱歉,我辜负了领导对我的期望,因个人原因,不得不向领导提出辞职。自__年8月来到八一以来,我一直受到了学校的各方面的帮助,尤其是
2023-07-04
掱礃杺里哋憾凊線,湜哪樣哋萇,莪們哋嬡卻哪庅哋短。随着社会经济的快速发展,好的句子被人们频繁转发。短短几句话有不同的角度来解读,所以你喜欢用什么句子?以下是由我们为你整理的《最拽非
2023-07-04
教师的工作之一是编写自己的教案和课件,但是教师也应该清楚,这不是一项随意写写的工作。通过课堂反馈,可以得出学生的思维方式和逻辑,所以,什么样的教案和课件才能算是好的呢?以下是本页面
2023-06-30
为后续课堂工作做准备,是教师所必须的。教师的教案就好比战士手里的宝剑,是他们在职业生涯上的重要工具和伙伴,一篇好的教案需要从哪方面开始写起呢?以下是编辑为大家整理的“有理数加法的教
2023-04-25
在学习数学的基础知识时我们就会看到一些关于有理数和无理数的内容,老师们会教给我们相关的知识,但还是会有很多人分不清,可以在留学群上面去搜索一下有理数和无理数的区别等的内容。有理
2022-04-12
对于刚刚加入学校的教师来说,教案和课件是非常重要的,但是必须确保教案和课件的内容充足。制定教案需要根据教师的教学风格和特点进行设计。我们为大家准备了“有理数教案”的相关内容,希望它
2023-05-15
无理数和有理数的概念是什么呢?感兴趣的小伙伴快来和小编一起看看吧。下面是由留学群小编为大家整理的“无理数和有理数的概念是什么”,仅供参考,欢迎大家阅读。无理数和有理数的概念有理
2021-08-12