留学群七年级数学教案

留学群专题频道七年级数学教案栏目,提供与七年级数学教案相关的所有资讯,希望我们所做的能让您感到满意!

七年级数学下册《相交线与平行线》教案

 

  教案要做的充分仔细才能更好的给学生们上课。下面是留学群的小编为大家整理的“七年级数学下册《相交线与平行线》教案”,仅供参考,希望对大家有帮助,欢迎阅读!更多内容请关注留学群!

七年级数学下册《相交线与平行线》教案

  一、 学生起点分析

  学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。

  学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。

  二、教学任务分析

  针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本节课的目标是:

  1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。

  2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。

  3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。

  三、教学过程设计

  本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节: 拓展延伸,综合应用;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。

  第一环节  走进生活 引入课题

  活动内容一:两条直线的位置关系

  1.请同学们自学第一节,提前两天搜集有关“两条直线的位置关系”的图片,提炼出数学图形,进行归类,然后小组合作交流。

  2.教师提前一天进行筛选,捕捉出有代表性的答案,课堂上由学生本人主讲,最后概括出有关结论。...

七年级数学下册《二元一次方程组》教案

 

  七年级数学下册的教案老师们准备好了吗?下面是留学群的小编为大家整理的“七年级数学下册《二元一次方程组》教案”,仅供参考,希望对大家有帮助,欢迎阅读!更多内容请关注留学群!

七年级数学下册《二元一次方程组》教案

  一.教学目标:

  1.认知目标:

  1)了解二元一次方程组的概念。

  2)理解二元一次方程组的解的概念。

  3)会用列表尝试的方法找二元一次方程组的解。

  2.能力目标:

  1)渗透把实际问题抽象成数学模型的思想。

  2)通过尝试求解,培养学生的探索能力。

  3.情感目标:

  1)培养学生细致,认真的学习习惯。

  2)在积极的教学评价中,促进师生的情感交流。

  二.教学重难点

  重点:二元一次方程的意义及二元一次方程的解的概念。

  难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  三.教学过程

  (一)创设情景,引入课题

  1.本班共有40人,请问能确定男女生各几人吗?为什么?

  (1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

  (2)这是什么方程?根据什么?

  2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少?

  3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示?

  两个方程中的x表示什么?类似的两个方程中的y都表示?

  像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

  4.点明课题:二元一次方程组。

  (设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

  (二)探究新知,练习巩固

  1.二元一次方程组的概念

  (1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

  [让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

  (2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

  ①x²+y=0 ②y=2x+4 ③y+½x ④x=2/y+1 ⑤(x+y)/3-2=0

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)

  2.二元一次方程组的解的概念

  (1)由学生给出引例的答案,教师指出这就是此方程组的解。

  (2)练习:把下列各组数的题序填入图中适当的位置:

  方程x+y=0的解,方程2x+3y=2的解,方程组的解。

  (3)既满足第一个方程也满足第二个...