留学群专题频道三角函数知识点归纳栏目,提供与三角函数知识点归纳相关的所有资讯,希望我们所做的能让您感到满意!
关于“三角函数知识点总结归纳”留学群的编辑为您收集了一些资料,进行文档处理对于保证工作效率是至关重要的,第一时间会想要去借鉴范文。写作架构不是固定不变的需要随着文章实际情况进行调整和变化,您是否对范文的撰写感到不知所措呢?我们会保持与时俱进为您提供最新的内容!
《三角函数》
【知识网络】
应用 弧长公式 同角三角函数诱导 应用的基本关系式 公式 应用三角函数的 角度制与 任意角的任意角的概念 图像和性质 弧度制 三角函数和角公式 应用 倍角公式 应用差角公式 应用一、任意角的概念与弧度制
1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.逆时针旋转为正角,顺时针旋转为负角,不旋转为零角
?2、同终边的角可表示为?????k360计算与化简 证明恒等式 应用 已知三角函数值求角 ???k?Z?
x轴上角:????k180??k?Z?
y轴上角:????90?k180??k?Z?
??k?Z? ??k?Z? ??k?Z? ??k?Z?
??3、第一象限角:?0?k360???90?k360??? 第二象限角:?90?k360???180?k360??? 第三象限角:?180?k360???270?k360??? 第四象限角:?270?k360???360?k360?4、区分第一象限角、锐角以及小于90的角
?? 第一象限角:?0?k360???90?k360???k?Z?
锐角:?0???90??小于90的角:????90?
?为第几象限角? 25、若?为第二象限角,那么
?2?2k??????2k?
?4?k???2??2?k?
k?0,所以
?4????2, k?1,5?3????, 42?在第一、三象限 26、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad. 7、角度与弧度的转化:1??8、角度与弧度对应表: 角度 弧度 ?180?0.017451?180???57.30??57?18?
0? 0 30? 45? 60? 90 120? 135? 150? 180? 360? 2? 33? 45? 6? 6? 4? 3? 2? 2?
9、弧长与面积计算公式弧长:l???R;面积:S?
二、任意角的三角函数
11l?R???R2,注意:这里的?均为弧度制. 22yxy1、正弦:sin??;余弦cos??;正切tan??
rrx 其中?x,y?为角?终边上任意点坐标,r?
2、三角函数值对应表:
度 0
0 弧度
sin? 0
cos? 1
P(x,y)rx2?y2. ? 30 45 60 90 120 135 150 180 270? 360 2? 0 ? 61 2? 42 22 2? 33 21 2? 22? 33? 45? 6? 0 3? 21 3 22 21 21 3 20 31?2? ? 222 ?1 0 1 tan? 0 3 ...
许多同学想了解三角函数,那么三角函数有哪些知识点呢?快来了解一下吧。下面是由留学群小编为大家整理的“三角函数知识点归纳总结”,仅供参考,欢迎大家阅读。
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);
2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数。
y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、见“高次”...
三角函数是高中数学必学知识点,那么三角函数知识点有哪些呢?快来和小编一起看看吧。下面是由留学群小编为大家整理的“三角函数知识点总结归纳”,仅供参考,欢迎大家阅读。
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);
2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数
y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、...
三角函数知识点归纳推荐访问