留学群三角形公式大全

留学群专题频道三角形公式大全栏目,提供与三角形公式大全相关的所有资讯,希望我们所做的能让您感到满意!

三角形正弦余弦公式大全

 

  高中数学的三角形正弦与余弦的公式同学们还记得吗?如果没有总结过,没记住的话,请往下看。下面是由留学群小编为大家整理的“三角形正弦余弦公式大全”,仅供参考,欢迎大家阅读。

  三角形正弦余弦公式大全

  Sin(A+B)=SinA*CosB+SinB*CosA

  Sin(A-B)=SinA*CosB-SinB*CosA

  Cos(A+B)=CosA*CosB-SinA*SinB

  Cos(A-B)=CosA*CosB+SinA*SinB

  Tan(A+B)=(TanA+TanB)/(1-TanA*TanB)

  Tan(A-B)=(TanA-TanB)/(1+TanA*TanB

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

  拓展阅读:求三角形边长公式

  三角形边长公式:1、根据余弦定理,有公式:a^2=b^2+c^2-2bc×cosA。2、根据正弦定理,有公式:a=b*sinA/sinB。3、根据勾股定理,有公式:a^2+b^2=c^2。

  三角形边长的计算方法

  对于任意一个三角形,已知两角一对边,可以根据正弦定理计算:a=b*sinA/sinB。正弦定理的公式为a/sinA = b/sinB =c/sinC,根据正弦定理的公式可以解三角形。

  对于任意一个三角形,已知两条边与夹角,可以根据余弦定理求出第三条边,有公式:c^2=a^2+b^2-2abcosC、a^2=b^2+c^2-2bccosA、b^2=a^2+c^2-2accosB。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。对于直角三角形,可以根据勾股定理求变成,有公式:a^2+b^2=c^2。

  如何计算三角形的斜边

  已知两个直角边,求第三边的方法有

  已知一个锐角和两直角边,如图所示

  已知直角三角形一锐角度数,求斜边的方法有正弦定理直接求出

  还有通过正弦定理算出直角边,再用勾股定理求出

...

三角形余弦定理公式大全

 

  高中数学是一个非常让人头痛的学科,但是还有有许多同学摆正态度积极学习,为了更好的帮助他们提高成绩。下面是由留学群小编为大家整理的“三角形余弦定理公式大全”,仅供参考,欢迎大家阅读。

  三角形余弦定理公式大全

  余弦定理(第二余弦定理)

  余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

  直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值

  编辑本段

  余弦定理性质

  对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质--

  a^2 = b^2+ c^2 - 2·b·c·cosA

  b^2 = a^2 + c^2 - 2·a·c·cosB

  c^2 = a^2 + b^2 - 2·a·b·cosC

  cosC = (a^2 + b^2 - c^2) / (2·a·b)

  cosB = (a^2 + c^2 -b^2) / (2·a·c)

  cosA = (c^2 + b^2 - a^2) / (2·b·c)

  (物理力学方面的平行四边形定则中也会用到)

  第一余弦定理(任意三角形射影定理)

  设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

  a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A。

  编辑本段

  余弦定理证明

  平面向量证法

  ∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小) ∴c·c=(a+b)·(a+b)

  ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

  (以上粗体字符表示向量)

  又∵cos(π-θ)=-Cosθ

  ∴c2=a2+b2-2|a||b|cosθ(注意:这里用到了三角函数公式)

  再拆开,得c2=a2+b2-2*a*b*CosC

  即 cosC=(a2+b2-c2)/2*a*b

  同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。

  平面几何证法

  在任意△ABC中

  做AD⊥BC.

  ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

  则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

  根据勾股定理可得:

  AC^2=AD^2+DC^2

  b^2=(sinB*c)^2+(a-cosB*c)^2

  b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2

  b^2=(sinB2+cosB2)*c^2-2ac*cosB+a^2

  b^2=c^2+a^2-2ac*...