留学群专题频道不定方程解题思路栏目,提供与不定方程解题思路相关的所有资讯,希望我们所做的能让您感到满意!
行测数量的运算一直是行测考试的重点题型,下面由留学群小编为你精心准备了“行测数量关系:不定方程的解题思路”,持续关注本站将可以持续获取更多的考试资讯!
行测数量关系:不定方程的解题思路
在我们数量关系中,同样你如果集齐五福,你就可以快速解决不定方程,让我们离上岸更近一步,那么接下来就带大家看一下到底需要集齐哪五福。
一、奇偶福
当未知数系数前出现偶数时。
例如不定方程3X+4Y=47(X,Y为正整数),47是一个奇数,4Y一定是一个偶数,所以3X一定是个奇数,那么X的值也一定是一个奇数,取X=1,3,5......
二、尾数福
当看到未知数系数以0或5结尾的数,则用尾数法。
例如不定方程5X+3Y=45(X,Y为正整数),5X尾数为0或5,45尾数为5,所以3Y的尾数为0或5,而3Y不可能尾数为0,所以3Y的尾数一定是5,Y取5,15....
例1:现有149个同样大小的苹果往大、小两个袋子装,已知大袋每袋装17个苹果,小袋每袋装10个苹果。每个袋子都必须装满,则需要大袋子的个数是?
A.5 B.6 C.7 D.8
【解析】答案:C。设大袋子X个,小袋子Y个,则17X+10Y=149,10Y的尾数为0,149尾数为9,则17尾数一定为9,所以X=7,选C。
三、整除福
当未知数系数与常数有公约数时。
例如不定方程7X+4Y=56(X,Y为正整数),7和56有都能被7整除,所以4Y也一定能被7整除,所以Y取7,14,21.....
四、特值福
仅运用在不定方程组中,且让我们求所有未知数之和。不定方程组有无穷组解。而我们只需求未知数之和。也就意味着未知数之和是确定的。所以此时我们只需求出中的某一组求和就能得到答案。
例2:甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件需花3.15元,如果购买甲4件、乙10件、丙1件需花4.2元,那么购买甲、乙、丙各1件需花多少钱?
A.1.05 B.1.4 C.185 D.2.1
【解析】答案:A。设甲、乙、丙各买一件需要X、Y、Z元,则3X+7Y+Z=3.15,4X+10Y+Z=4.2,令Y=0,3X+Z=3.15,4X+Z=4.2,两式相减得到X=1.05,Z=0,Y=0,所以X+Y+Z=1.05。
五、排除带入福
直接将选项代入题目,看哪个选项符合题目的要求。
例3:射箭运动员进行训练,10支箭共打了93环,且每支箭的环数都不低于8环。问命中10环的箭数有几支?( )
A.2 B.3 C.4 D.5
【解析】答案:B。设命中9环X支,命中10环Y支,得到9X+10Y=93,将Y=2,3,4,5代入不定方程,只有Y=3符合。
推荐阅读:
公务员技巧之不定方程解题思路解析
不定方程(组)是指未知数的个数多于方程的个数的一个(或几个)方程组成的方程(组)。不定方程的解一般有无数个,而在这无数个解中要找出一个适合题意的解,则是行测出题的思路。根据不定方程的这一特点可知,由题干条件推出结论的推理方式比较费时费力,采用代入法则是不定方程的一般解法。代入法也分为选项代入法、特殊值代入法两种。
例1、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均分给各个老师带领刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )(2012年国家公务员考试行测第68题)
A. 36 B.37 C.39 D.41
解析:读题之后可以看出题干中存在两个明显的等量关系,而也没有其他较简单的做法,则考虑列方程组,设每名钢琴教师带领x名学员,每名拉丁舞教师带领y名学员;
该方程组有三个未知数,只有两个方程,属于不定方程,用代入法较好。采用特殊值代入法较好。用第一个方程:5x+6y=76,用奇偶性分析可得x应该为偶数,根据“每位老师所带的学生数量都是质数”可得x只能为2,又可求的Y=11.再把X=2,Y=11代入方程二可得4x+3y=41。
该题先列出方程组,再根据题干给出的特殊信息--奇偶性和质数特性,采用特殊值代入的方式解题。
例2、三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是( )(2012年国家公务员考试行测第72题)
A、A等和B等共6幅 B、B等和C等共7幅
C、A等最多有5幅 D、A等比C等少5幅
解析:读题之后可以看出题干中存在两个明显的等量关系,即画的张数是10,投票数总共为50.则考虑列方程组,设A等、B等、C等作品的幅数分别为x、y、z张。可得方程组为:
化简得:2x+y=5,可得x=2,y=1,z=7,答案选D。或者得答案x=1,y=3,z=6,无答案,答案选D。
不定方程解题首先要确定题型,其题型特征是具有两个或两个以上明显的等量关系,且没有其他(如设一思想、数字特征等快捷的方法)方法时,考虑用列不定方程。不定方程考察考生如何在纷杂的信息中获得有效且适合题干的信息。
不定方程通常需要先化简--使方程的个数减少,然后根据...
不定方程解题思路推荐访问