留学群专题频道中考奥数知识点栏目,提供与中考奥数知识点相关的所有资讯,希望我们所做的能让您感到满意!
留学群中考网为大家提供初中奥数锐角三角形知识点,更多中考资讯请关注我们网站的更新!
初中奥数锐角三角形知识点
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
初中研究的锐角 的 三角函数为:正弦(sin),余弦(cos),正切(tan)。
取值范围:
θ是锐角:
tanθ>0
cotθ>0
变化情况:
1.锐角三角函数值都是正值
2.当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°0。
关系式:
1)同角三角函数基本关系式
tanα·cotα=1
sin^2α+cos^2α=1
cos^2α+sin^2α=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
(sinα)^2+(cosα)^2=1
1+tanα=secα
1+cotα=cscα
2)诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
小编精心为您推荐:
中考奥数知识点总结:恒等变形
恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.
表示两个代数式恒等的等式叫做恒等式.
如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.
将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).
以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.
如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.
1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.
如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.
反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).
2.通过一系列的恒等变形,证明两个多项式是恒等的.
如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r
例:求b、c的值,使下面的恒等成立.
x2+3x+2=(x-1)2+b(x-1)+c ①
解一:∵①是恒等式,对x的任意数值,等式都成立
设x=1,代入①,得
12+3×1+2=(1-1)2+b(1-1)+c
c=6
再设x=2,代入①,由于已得c=6,故有
22+3×2+2=(2-1)2+b(2-1)+6
b=5
∴x2+3x+2=(x-1)2+5(x-1)+6
解二:将右边展开
x2+3x+2=(x-1)2+b(x-1)+c
=x2-2x+1+bx-b+c
=x2+(b-2)x+(1-b+c)
比较两边同次项的系数,得
由②得b=5
将b=5代入③得
1-5+c=2
c=6
∴x2+3x+2=(x-1)2+5(x-1)+6
这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.
中考数学复习资料大全尽在本网站 ,希望对您的中考数学复习有所帮助。中考奥数知识点推荐访问