留学群专题频道二次方程组栏目,提供与二次方程组相关的所有资讯,希望我们所做的能让您感到满意!
二元二次方程组的解法有同学知道吗?小编想大部分学子可能都忘记了,为了同学们遇题不慌。下面是由留学群小编为大家整理的“二元二次方程组的解法有哪些”,仅供参考,欢迎大家阅读。
二元二次方程组的解法有哪些
由于解一般形式的二元二次方程组所涉及的系数颇多,故通常就实际问题来解。 e.g.1.解:2x^2+y^2+3xy+6x+2y+12=0…①, 且x^2+4y^2+4xy+x+y+15=0…
②. 提示: 解方程的基本思想是消元与降次。仅仅就其消元而言,任给的①,②都难以直接用一个变量表示另一个变量(即用关于x的代数式表示y,或y的代数式用表示x),其症结在于二元二次项3xy,4xy,因此,首先需消去二元二次项。
②*3-①*4,得到一个新的方程。再运用配方法分别将其x,y配方为如下形式:a(x+i)^2+b(y+j)^2+c=0,就可实现了用一个变量表示另一个变量,但其涉及到开方,且变为无理方程作解,比较复杂。就其降次而言,可运用因式分解法(包括十字相乘法的推广:叉乘法及叉阵),难度较大。也可以运用函数的解析法。在此,谨作点拨。总的而言,一般有三种普遍的方法:代数方程解法,因式分解法,运用函数。
拓展阅读:二元二次方程组怎么解
对于第一类型的二元二次方程组,可用代入消元法,从而归结为解含一个未知数的一个二次方程;而对于第二类型的二元二次方程组,经过消元后一般将归结为一元四次方程,但对如下几种特殊情形可以用一次和二次方程的方法来求解的:
1、存在数m和n,使mF1(x,y)+nF2(x,y)是一元方程;或是一次方程;或是可约。
2、F1(x,y)和F2(x,y)均为对称多项式或反对称多项式。
例题:
x+y=a ①
x^2+y^2=b ②
由1得 y=a-x ③
将③代如②得 :
x^2+(a-x)^2=b
即 2*x^2-2*a*x+(a^2-b) =0
若2b-a^2>=0
则解之得 :
x1=(a+根号(2b-a^2))/2
x2=(a-根号(2b-a^2))/2
再由③式解出相应的y1,y2。
扩展资料:
二元二次方程组特殊形式
1、一个一次方程的二元二次方程组。由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。
2、不含一次项。不含有一次项的二元二次方程。解法为:将常数项通过加减消元消去。
3、二次项系数成比例。解法为:通过加减消元消除二次项。
4、对称方程组。将方程组中各方程的未知数互换后与原方程一样,则此方程组为对称方程组。解的特性:两个未知数可以互换。
...
三元二次方程组怎么解答,解答常用的方法有几种?想了解的小伙伴看过来,下面由留学群小编为你精心准备了“三元二次方程组的解法是什么”仅供参考,持续关注本站将可以持续获取更多的资讯!
三元二次方程组的解法是什么
三元二次方程组的解法是代入消元法。
第一步:配方
进行三元配方,令其中两个未知数为参数,对剩下的一个进行像一元二次方程一样的配方。
第二步:消元
合并同类项,并化系数为一。
拓展阅读:三元一次方程组的基本解法
跟二元一次方程组相同,最本质的就是需要消元。我们在解二元一次方程组的时候,利用代入消元法或者加减消元法,将二元一次方程组转化成一元一次方程,即2→1的过程,然后求解;
而在解三元一次方程组时,首先要将其转化成二元一次方程组,然后再按照二元一次方程组的解法进行求解,简而言之就是3→2→1的过程。
在解方程组时,我们要遵循四个步骤:一看,二变,三消,四解。
一看:即观察方程组中的各未知数的系数,有没有1或-1,有没有互为倍数的关系;确定后方便求解。
二变:即选定采用代入消元法还是加减消元法进行相应的变形(推荐使用加减消元,防止出现分数,方便解题)
三消:由三元变成二元,再变成一元,求出一个未知数的值;即3→2→1的过程。
四解:将求出的一个未知数的值往回带入,分别求出另外两个未知数的值,即1→2→3的过程。
三元一次方程组概念
含有三个相同的未知数,每个方程中含未知数的项的次数都是一次,叫做三元一次 方程组。方程组中,少于3个方程时,无法求所有未知数的解,这时叫做三元一次不定方程。
推荐阅读:
二次方程组推荐访问