留学群初二数学知识点总结

留学群专题频道初二数学知识点总结栏目,提供与初二数学知识点总结相关的所有资讯,希望我们所做的能让您感到满意!

初二数学知识点总结归纳大全

 

  很多同学在复习初二数学时,因为之前没有做过系统的总结,导致复习知识点分散,复习效率低下。下面是由留学群编辑为大家整理的“初二数学知识点总结归纳大全”,仅供参考,欢迎大家阅读本文。

  初二数学知识点总结归纳大全

  第一章 勾股定理

  定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

  判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。 定义:满足a +b =c 的三个正整数,称为勾股数。

  第二章 实数

  定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示)

  一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。 特别地,我们规定0的算术平方根是0。

  一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。 求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

  一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。 正数的立方根是正数;0的立方根是0;负数的立方根是负数。 求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。 有理数和无理数统称为实数,即实数可以分为有理数和无理数。

  每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  在数轴上,右边的点表示的数比左边的点表示的数大。

  第三章 图形的平移与旋转

  定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。

  经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

  在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。

  任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  第四章 四边形性质探索

  定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

  平行四边形: 两组对边分别平行的四边形.。 对边相等,对角相等,对角线互相平分。 两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形

  菱形 :一组邻边相等的平行四边形 „„(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。

  矩形: 有一个内角是直角的平行四边形 „„(平行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。

  正方形: 一组邻边相等的矩形。 正方形具有平行四边形、菱形、矩形的一切性...

初二数学知识点总结归纳

 

  初中数学学习整理知识点是非常重要的,快来和小编一起看看吧。下面是由留学群小编为大家整理的“初二数学知识点总结归纳”,仅供参考,欢迎大家阅读。

  初二数学知识点总结归纳

  一、勾股定理

  1、勾股定理

  直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

  3、勾股数

  满足的三个正整数,称为勾股数。

  常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

  二、证明

  1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

  2、三角形内角和定理:三角形三个内角的和等于180度。

  (1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

  (2)三角形的外角与它相邻的内角是互为补角。

  3、三角形的外角与它不相邻的内角关系

  (1)三角形的一个外角等于和它不相邻的两个内角的和。

  (2)三角形的一个外角大于任何一个和它不相邻的内角。

  4、证明一个命题是真命题的基本步骤

  (1)根据题意,画出图形。

  (2)根据条件、结论,结合图形,写出已知、求证。

  (3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

  三、数据的分析

  1、平均数

  ①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数。

  ③平均数、中位数和众数都是描述数据集中趋势的统计量。

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义。

  3、从统计图分析数据的集中趋势

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。<...

初二数学上册知识点总结

 

  数学作为同学们最容易拉分的科目,有哪些知识点呢。以下是由留学群编辑为大家整理的“初二数学上册知识点总结”,仅供参考,欢迎大家阅读。

  初二数学上册知识点总结

  第一章 勾股定理

  1、探索勾股定理

  ① 勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2

  2、一定是直角三角形吗

  ① 如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形

  3、勾股定理的应用

  第二章 实数

  1、认识无理数

  ① 有理数:总是可以用有限小数和无限循环小数表示

  ② 无理数:无限不循环小数

  2、平方根

  ① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

  ② 特别地,我们规定:0的算数平方根是0

  ③ 平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

  ④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

  ⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

  ⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

  3、立方根

  ① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

  ② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

  ③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

  4、估算

  ① 估算,一般结果是相对复杂的小数,估算有精确位数

  5、用计算机开平方

  6、实数

  ① 实数:有理数和无理数的统称

  ② 实数也可以分为正实数、0、负实数

  ③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

  7、二次根式

  ① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

  ② =(a≥0,b≥0),=(a≥0,b>0)

  ③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

  ④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

  第三章 位置与坐标

  1、确定位置

  ① 在平面内,确定一个物体的位置一般需要两个数据

  2、平面直角坐标系

  ① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

  ② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y...