留学群因式分解教案

留学群专题频道因式分解教案栏目,提供与因式分解教案相关的所有资讯,希望我们所做的能让您感到满意!

因式分解教案8篇

04-11

标签: 因式分解教案

 

  每个老师需要在上课前弄好自己的教案课件,所以在写的时候老师们就要花点时间咯。教案是充分发挥教师主观能动性和创造性的必要途径,老师在写教案课件的时候要注意什么?以下是留学群为您整理的一些《因式分解教案》的内容,在阅读本文以后,相信您会有所收获!

因式分解教案 篇1

  第1课时

  1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.

  2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.

  自主探索,合作交流.

  1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.

  2.通过对因式分解的教学,培养学生“换元”的意识.

  【重点】 因式分解的概念及提公因式法的应用.

  【难点】 正确找出多项式中各项的公因式.

  【教师准备】 多媒体.

  【学生准备】 复习有关乘法分配律的知识.

  导入一:

  【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.

  解法1:这块场地的面积=×+×+×=++==2.

  解法2:这块场地的面积=×+×+×=×=×4=2.

  从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.

  [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

  导入二:

  【问题】 计算×15-×9+×2采用什么方法?依据是什么?

  解法1:原式=-+==5.

  解法2:原式=×(15-9+2)=×8=5.

  解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.

  [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.

  一、提公因式法分解因式的概念

  思路一

  [过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.

  如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).

  大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?

  分析:等式左边...

因式分解教案精选

04-11

标签: 因式分解教案

 

  教案课件也是老师工作中的一部分,因此老师最好能认真写好每个教案课件。只有提前备好教案课件,这样课堂的教学效率才能有大的提升,如何写出让自己满意教案课件?根据您的需求,留学群小编为您搜集了一些内容:因式分解教案,欢迎阅读,希望对你有帮助!

因式分解教案 篇1

  一、教材分析

  (一)地位和作用

  分解因式与数是分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。因此分解因式这一章在整个教材中起到了承上启下的作用。同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。因此,因式分解的学习是数学学习的重要内容。根据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。因此公式法是分解因式的重要方法之一,是现阶段的学习重点

  (二)学情分析:学生已经学习了乘法公式中的完全平方公式和平方差公式,在上一节课学习了提公因式法和平方差公式分解因式,初步体会了分解因式与整式乘法的互逆关系,为本节课的学习奠定了良好的基础。学生已经建立了较好的预习习惯,为本节课的难点突破提供了先决条件。

  (三)教学目标

  1.知识与技能使学生了解运用公式法分解因式的意义;会用公式法(直接用公式不超过两次)分解因式(指数是正整数);使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式。

  2.过程与方法经历通过整式乘法的完全平方公式逆向得出运用公式分解因式方法的过程,发展学生的逆向思维和推理能力。

  3.情感与态度培养学生灵活的运用知识的能力和操积极思考的良好行为,体会因式分解在数学学科中的地位和价值。

  (四)教学重难点、

  1.教学重点:会运用完全平方公式和分解因式,培养学生观察、分析问题的能力。

  2.教学难点:准确理解和掌握公式的结构特征,并善于运用完全平方公式分解因式。

  3.易错点:分解因式不彻底。

  二、学法与教法分析

  1.学法分析:

  ①注意分解因式与整式乘法的关系,两者是互逆的。

  ②注意完全平方公式的特点。

  2.教法分析:根据《课标》的要求,结合本班学生的知识水平,本堂课采用对比,探究,讲练结合的方法完成教学目标。在教学过程中,所选例题保证基本的运算技能,避免复杂的题型,直接用公式不超过两次。

  三、教学过程分析

  (一)创设情境,发现新知

  1.计算:通过让学生回答完全平方公式,加深学生对公式的印象,并通过让学生观察完全平方公式而找到公式的特征(1)x2+2x+1(2)(3x+y)(3x-y)利用一组整式的乘法运算复习完全平方公式和平方差公式,为探究运用公式法分解因式打下基础。

  2.你能把多项式:(x+1)2分解因式吗?学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。