留学群专题频道圆柱的体积教案栏目,提供与圆柱的体积教案相关的所有资讯,希望我们所做的能让您感到满意!
教学目标
圆柱的体积(1)
圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具
推导圆柱体积公式的圆柱教具一套。
教学过程
【复习导入】
1.口头回答。
(1)什么叫体积?怎样求长方体的体积?
(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。
【新课讲授】
1.教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2.教学补充例题。
(...
圆柱的体积教案推荐访问