留学群均值不等式

留学群专题频道均值不等式栏目,提供与均值不等式相关的所有资讯,希望我们所做的能让您感到满意!

均值不等式和基本不等式的区别有哪些

 

  均值不等式是数学中一个很重要的知识点,让我们一起来了解一下吧。下面是由留学群编辑为大家整理的“均值不等式和基本不等式的区别有哪些”,仅供参考,欢迎大家阅读本文。

  均值不等式和基本不等式的区别

  区别如下:

  1、基本不等式。和定积最大:当a+b=S时,ab≤S^2/4(a=b取等),积定和最小:当ab=P时,a+b≥2√P(a=b取等)。

  2、均值不等式:如果a,b 都为正数,那么√(( a^2+b^2)/2)≥(a+b)/2 ≥√ab≥2/(1/a+1/b)(当且仅当a=b时等号成立.) 。( 其中√(( a^2+b^2)/2)叫正数a,b的平方平均数也叫正数a,b的加权平均数;(a+b)/2叫正数a,b的算数平均数;√ab正数a,b的几何平均数;2/(1/a+1/b)叫正数a,b的调和平均数) 。

  均值不等式公式

均值不等式公式

高中四个均值不等式推导过程详解

 

  从初中开始就已经学习了简单的不等式,到高中深入学习,又有了均值不等式,下面是由留学群编辑为大家整理的“高中四个均值不等式推导过程详解”,仅供参考,欢迎大家阅读本文。

  高中四个均值不等式推导过程详解

  四个均值不等式

  1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

  2、几何平均数:Gn=(a1a2...an)^(1/n)

  3、算术平均数:An=(a1+a2+...+an)/n

  4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n

  这四种平均数满足Hn≤Gn≤An≤Qn 的式子即为均值不等式。

  均值不等式用数学归纳法的证明

  第一步:等价变换,分子增加又减去同一项,巧妙处是这一项指数的选取,正好是要证明的右端。

  第二步:(1)把前面(a1+a2+...+ak)用上面假设n=k成立时较小的右端乘k代替,(a1+a2+...+ak)/k≥(a1a2...ak)^(1/k),两边乘k:

  a1+a2+...+ak≥k(a1a2...ak)^(1/k),

  因此≥成立。

  (2)难点是a(k+1)+(k-1)(a1a2...a(k+1))^(1/(k+1))≥k[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k)

  其实也很好证明(k-1)(a1a2...a(k+1))^(1/(k+1),看成是k-1个数,加上a(k+1),也是k个数。

  根据上面假设,n=k时,(a1+a2+...+ak)/k≥(a1a2...ak)^(1/k)是成立的,

  注意!!!a1,a2,...,ak只是正数的代表,不限于什么正数,换成k个数:a(k+1),和k-1个(a1a2...a(k+1))^(1/(k+1),这个不等式也是成立的!代换一下,就成了:

  a(k+1)+(k-1)(a1a2...a(k+1))^(1/(k+1))≥k[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k)

  第三步:

  前面两项提取k之后成为:

  (a1a2...ak)^(1/k)+[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k)

  使用前面一开始证明的n=2时的结果,a1+a2≥2√(a1a2)(当成公式,不是当成数)

  (a1a2...ak)^(1/k)+[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k)

  ≥2{(a1a2...ak)^(1/k)[a(k+1)(a1a2...a(k+1))^[(k-1)/(k+1)]]^(1/k)}^(1/2)

  =2{(a1a2...ak)^(1/k)[a(k+1)^(1/k)(a1a2...a(k+1))^[(k-1)/k(k+1)]]}^(1/2)

  =2{(a1a2...ak)^(1/k)[a(k+1)^(1/k)(a1a2...a(k+1))^[1/(k+1)-1/k(k+1)]]}^(1/2)

均值不等式的推导过程有哪些

 

  均值不等式是数学中的一个重要公式。也是十分常见的一个考点。下面是由留学群编辑为大家整理的“均值不等式的推导过程有哪些”,仅供参考,欢迎大家阅读本文。

  公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

  1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)

  2、几何平均数:Gn=(a1a2...an)^(1/n)

  3、算术平均数:An=(a1+a2+...+an)/n

  4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n

  这四种平均数满足Hn≤Gn≤An≤Qn 的式子即为均值不等式。

  推导过程

  关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:

  (注:在此证明的,是对n维形式的均值不等式的证明方法。)

  用数学归纳法证明,需要一个辅助结论。

1

  引理:设A≥0,B≥0,则,且仅当B=0时取等号。

  注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。

  原题等价于:

2
3

  当且仅当4

公务员行测数量关系备考:均值不等式

 

  均值不等式作为常考题型之一,备考好此知识点非常重要,下面由留学群小编为你准备了“公务员行测数量关系备考:均值不等式”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!

公务员行测数量关系备考:均值不等式

  在每年的各类考试中,极值问题都是常考的一类题目,极值问题其实是非常简单的一类题目,只要掌握基本公式和结论。就能快速解题,下面小编就来带大家了解极值问题当中的一类问题—均值不等式。

  什么是均值不等式

  定理1:若a、b是实数,则 ,等号当且仅当a=b时取得。推论1:若a、b是正实数, ,等号当且仅当a=b时取得。定理2:若a、b、c是正实数,则 ,等号当且仅当a=b=c时取得。推论2:若a、b、c是正实数,则 ,等号当且仅当a=b=c时取得。

  均值不等式的应用

  (1) 和一定,求积的最大值。

  例1:3个自然数之和为14,它们的乘积的最大值是多少?

  A.42 B.84 C.100 D.120

  【答案】C。解析:三个数的和一定,要想使积最大,则需要使这几个数尽量接近,取5、5、4,所以积最大为100。C选项正确。

  (2) 积一定,求和的最小值。

  例2:若两个自然数的积为100,则这两个自然数和的最小值为多少?

  A.10 B.20 C.30 D.40

  【答案】B。根据,可得这两个自然数的和。所以,这两个自然数和的最小值为20。B选项正确。

  例3:用18米...

行测数量关系技巧:均值不等式巧解极值问题

 

  做了许多行测模拟题还是没有有效的提升自己的分数?那是你没有掌握一些技巧和重点,下面由留学群小编为你精心准备了“行测数量关系技巧:均值不等式巧解极值问题”,持续关注本站将可以持续获取更多的考试资讯!

行测数量关系技巧:均值不等式巧解极值问题

  极值问题在行测数学运算中被考察的几率很大,这类题目的解答方法比较多,对这类知识的考查也有可能会成为近几年的重点。下面就讲解一下均值不等式解极值问题的应用。

  一、什么是均值不等式

  二、均值不等式的应用

  1、和一定,求积最大。

  由上述推论可知,当正实数a、b的和为定值时,a与b的乘积可取到最大值,当且仅当a=b时取到。

  【试题再现】某苗木公司准备出售一批苗木,如果每株以4元出售,可卖出20万株,若苗木单价每提高0.4元,就会少卖10000株。问在最佳定价的情况下,该公司最大收入是多少万元?

  A.60 B.80 C.90 D.100

  【答案】C。解析:总收入=售价×销量。设最佳定价在4元每株的基础上提高0.4x元,则销量会在20万株的基础上少卖x万株故。收入=(4+0.4x)×(20-x)=0.4(10+x)×(20-x)。求收入的最大值,即求(10+x)×(20-x)的最大值。因为(10+x)+(20-x)=30,即(10+x)与(20-x)的和一定,当且仅当10+x=20-x,x=5时,(10+x)×(20-x)取到最大值(10+5)×(20-5)=225,故公司最大收入为0.4×225=90万元,选C。

  2、积一定,求和最小。

  由上述推论可知,当正实数a、b的乘积为定值时,a与b的和可取到最小值,当且仅当a=b时取到。

  【试题再现】某村民要在屋顶建造一个长方体无盖贮水池,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么要造一个深为3米容积为48立方米的无盖贮水池最低造价是多少元?

  A.6460 B.7200 C.8160 D.9600

  【答案】C。解析:水池造价=池地造价+池壁造价。水池深3米、容积48米,设长和宽分别为a、b,有底面积ab=48÷3=16平方米,池壁面积为2×(3a+3b)。因此水池造价为:16×150+2×(3a+3b)×120=2400+720×(a+b)。要求水池最低造价,即求a+b的最小值。a、b积一定为16,和a+b可取得最小值,且a=b=4时取到。因此,最低造价为2400+720×(4+4)=2400+5760=8160元,选C。

  推荐阅读:

  

行测数量关系:均值不等式求极值

 

  任何一场考试取得成功都离不开每日点点滴滴的积累,下面由留学群小编为你精心准备了“行测数量关系:均值不等式求极值”,持续关注本站将可以持续获取更多的考试资讯!

行测数量关系:均值不等式求极值

  在行测数量关系中常见的极值问题里,有一类是一元二次函数求最值,相信大家都是能够根据题意列出式子,难点就在于解这个式子,常规的就是采用高中所学的求根公式来进行解答,这个过程就会显得慢而且计算量偏大,所以今天就给大家介绍运用均值不等式来进行求解。

  一、什么是极值问题

  极值问题顾名思义,就是求极大值和极小值的问题,就是当题干或者问法中出现最大或最小,最多或最少,至多或至少等字眼时,那就是极值问题。

  二、均值不等式

  1. 什么是均值不等式

  2. 均值不等式的应用

  三、经典例题

  【例题1】 某汽车坐垫加工厂生产一种汽车座垫,每套成本是144元,售价是200元。一个经销商订购了120套这种汽车座垫,并提出:如果每套座垫的售价每降低2元,就多订购6套。按经销商的要求,该加工厂获得最大利润需售出的套数是(  )。

  A.144 B.136 C.128 D.142

  【解析】A。根据题目所求为获得最大利润需售出的套数,可知此题属于极值问题,根据题意,可设每套坐垫减价2x元,那么就会多订购6x套,利润为y,得:

  y =(200-2x-144)x(120+6x),化简得:y =(56-2x)x(120+6x),要求y最大时的x,可以把(56-2x)看成一个整体a,(120+6x)看成一个整体b,就相当于求ab的最大值,根据均值不等式推论可知,当两个数的和一定,这两个数的积最大,所以去找到(56-2x)与(120+6x)的和一定即可,因为x的系数不同,所以要将x的系数化为相同两者之间的和才一定,所以可将(56-2x)提一个2,(120+6x)提一个6出来,让x的系数都为1,所以y =(56-2x)x(120+6x)=2 x(28-x)x 6 x(20+x),既原式变为y=12(28-x)(20+x),根据均值不等式和一定积最大,当且仅当(28-x)=(20+x)取等号,所以28-x=20+x得出x=4,既当坐垫降价8元时,能获得最大利润,所求获得最大利润售出套数为120+6x4=144,选A。

  【例题2】某报刊以每本2元价格发行,可发行10万份,若该报刊单价提高0.2元,发行量减少5000份,...