留学群专题频道奇偶性课件栏目,提供与奇偶性课件相关的所有资讯,希望我们所做的能让您感到满意!
08-22
教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。同时还要明白写好教案课件,也能让老师自己知道教学意图。很高兴为您介绍“奇偶性课件”相关的内容希望能够提供帮助,这篇文章旨在为您提供一些实用的技巧和建议希望您会从中受益!
教学目标:
1、在实践活动中认识奇数和偶数,了解奇偶性的规律。
2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。
3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:
探索并理解数的奇偶性
教学难点:
能应用数的奇偶性分析和解释生活中一些简单问题
教学过程:
一、游戏导入,感受奇偶性
1、游戏:换座位
首先将全班45个学生分成6组,人数分别为5、6、7、8、9、10。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
(游戏后学生发现6人、8人、10人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)
2、讨论:为什么会出现这种情况呢?
学生能很直观的找出原因,并说清这是由于6、8、10恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。
(此时学生议论纷纷,正是引出偶数、奇数的最佳时机)
3、小结:交换位置时两两交换,刚好都能换位置,像6、8、10是2的倍数,这样的数就叫做偶数;而有人不能与别人换位置,像5、7、9不时的倍数,这样的数就叫做奇数。
学生相互举例说说怎样的数是奇数,怎样的数是偶数。
二、猜想验证,认识奇偶性
1、设置悬念、激发思维
现在我们继续来考虑六组人数:5人、6人、7人、8人、9人、10人,那么猜猜那些组合起来能够刚好换完?那些不能?
2、学生猜想、操作验证
学生独立猜想,小组内汇报交流,然后统一意见进行验证(要求:验证时多选择几组进行证明)。
汇报成果:
奇数﹢奇数=偶数奇数-奇数=偶数奇数+奇数++奇数=奇数
奇数个
偶数+偶数=偶数偶数-偶数=偶数奇数+奇数++奇数=偶数
偶数个
奇数+偶数=奇数奇数-偶数=奇数偶数+偶数++偶数=偶数
你能举几个例子说明一下吗?
(学生的举例可以引导从正反两个角度进行)
3、深化
请同学们闭上眼睛,想一想:2+4+6+8++98+100这么多偶数相加的和是偶数还是奇数?为什么?
三、实践操作、应用奇偶性
我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。
1、一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上翻动10次呢...
05-24
教学目标
1.使学生理解奇函数、偶函数的概念;
2.使学生掌握判断某些函数奇偶性的方法;
3.培养学生判断、推理的能力、加强化归转化能力的训练;
教学重点
函数奇偶性的概念
教学难点
函数奇偶性的判断
教学方法
讲授法
教具装备
幻灯片3张
第一张:上节课幻灯片A。
第二张:课本P58图2—8(记作B)。
第三张:本课时作业中的预习内容及提纲。
教学过程
(I)复习回顾
师:上节课我们学习了函数单调性的概念,请同学们回忆一下:增函数、减函数的定义,并复述证明函数单调性的步骤。
生:(略)
师:这节课我们来研究函数的另外一个性质——奇偶性(导入课题,板书课题)。
(II)讲授新课
(打出幻灯片A)
师:请同学们观察图形,说出函数y=x2的图象有怎样的对称性?
生:(关于y轴对称)。
师:从函数y=f(x)=x2本身来说,其特点是什么?
生:(当自变量取一对相反数时,函数y取同一值)。
师:(举例),例如:
f(-2)=4, f(2)=4,即f(-2)= f(-2);
f(-1)=1,f(1)=1,即f(-1)= f(1);
……
由于(-x)2=x2 ∴f(-x)= f(x).
以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。
一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。
例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。
(打出幻灯片B)
师:观察函数y=x3的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?
生:(也是一对相反数)
师:这个事实反映在图象上,说明函数的图象有怎样的对称性呢?
生:(函数的图象关于原点对称)。
师:也就是说,如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。
一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。
例如:函数f(x)=x,f(x) =都是奇函数。
如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。
注意:从函数奇偶性的定义可以看出,具...
奇偶性课件推荐访问