留学群专题频道数学小论文栏目,提供与数学小论文相关的所有资讯,希望我们所做的能让您感到满意! “数学小论文”是让学生以日记的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。它可以是学生对某一个数学问题的理解、评价,可以是数学活动中的真实心态和想法,可以是进行数学综合实践活动遇到的问题,也可以是利用所学的数学知识解决生活中数学问题的经过等。数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。
(一)仪表
仪表是指人的容貌,是一个人精神面貌的外观体现。一个人的卫生习惯、服饰与形成和保持端庄、大方的仪表有着密切的关系。
1、卫生:清洁卫生是仪容美的关键,是礼仪的基本要求。不管长相多好,服饰多华贵,若满脸污垢,浑身异味,那必然破坏一个人的美感。因此,每个人都应该养成良好的卫生习惯,做到入睡起床洗脸、脚,早晚、饭后勤刷牙,经常洗头又洗澡,讲究梳理勤更衣。不要在人前"打扫个人卫生"。比如剔牙齿、掏鼻孔、挖耳屎、修指甲、搓泥垢等,这些行为都应该避开他人进行,否则,不仅不雅观,也不尊重他人。与人谈话时应保持一定距离,声音不要太大,不要对人口沫四溅。
2、服饰:服饰反映了一个人文化素质之高低,审美情趣之雅俗。具体说来,它既要自然得体,协调大方,又要遵守某种约定俗成的规范或原则。服装不但要与自己的具体条件相适应,还必须时刻注意客观环境、场合对人的着装要求,即着装打扮要优先考虑时间、地点和目的三大要素,并努力在穿着打扮的各方面与时间、地点、目的保持协调一致。
(二)言谈
言谈作为一门艺术,也是个人礼仪的一个重要组成部分。
1、礼貌:态度要诚恳、亲切;声音大小要适宜,语调要平和沉稳;尊重他人。
2、用语:敬语,表示尊敬和礼貌的词语。如日常使用的"请"、"谢谢"、"对不起",第二人称中的"您"字等。初次见面为"久仰";很久不见为"久违";请人批评为"指教...
为什么说黄金分割线最完美,想必很多人都有疑问。留学群整理了数学小论文:黄金分割线,欢迎阅读。
数学小论文:黄金分割线
伟大的数学王国由0-9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。
把一条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似0.618,这就是黄金分割点。
从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。
一、画图的应用
1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近0.618,这样画出的图形更美。
2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目。
二、人体的应用
1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是0.618,这样的身材堪称最美。
2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点……
三、建筑物的应用
古今中外,许多建造师都偏爱0.618,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔……
四、生活上的应用
1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。
2、我们家里大多数门窗的宽和长的比也是0.618,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。
大千世界,美轮美奂,到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!
...11-29
数学让我们学会如何思考,这就是今天留学群整理的小论文的主题,欢迎阅读。
小论文:数学让我学会思考
你有遇到过不会做的题目吗?可不今天我就遇到一个题不会了,这个问题是:一个挂钟一天一共敲了多少下?这个钟整点是几时它就敲几下,每半点时只敲一下。这个时钟现在在我们身边很少见,现大家都用上手机、电子时钟,很少见到这能讲话的钟。
当我遇到这题时,考虑到一天有24小时,先写的算式是:整点时敲---1+2+3+4+5+6+7+8+9+10+11+12=78(下);一天整点敲---78*2=156(下),因每天有24小时,以上才算12小时整的敲响数,所以在此要乘2才能算出一天所敲响的数;题中所讲每半点敲1下,可算出12*1=12(下)12*2=24(下);一天所敲响----156+24=180(下)
妈妈见我写的算式后对我说:“不光有这个方法,还有一简单的算法。”于是我开动小脑筋,还是想不出比此更简单的方法,无奈之下我只以能求助妈妈。
妈妈对我讲简单的方法从这12个小小数字中找规律:1、2、3、4、5、6、7、8、9、10、11、12,在此这12个数字帮它们找朋友,每两个数字为一组,每组得数一样多。在妈妈的提醒下我想到:这六组朋友:第一组--1+12=13、第二组—2+11=13、第三组—3+10=13……第六组—6+7=13。每12个数中有6个13个,一天整天中还有个12时,可列出:(6*13)*2=156(下)①;每半点敲一下,一天中有24小时,可得出:24*1=24(下)②。一整天时钟敲多少下,用①+②=156+24=180(下)。
首次我完成的结果虽然与在妈妈的提醒下完成的结果一样,但是两个的方法后者较简单速度也快。通过这题目,我明白了无论做什么题时,有最笨拙的方法也有简单的方法,只要你能找到规律,相信自己,一定行!只要你敢于思考、静心对待问题,新的方法总能出现的。
学数学就是为了能在实际生活中应用,不要把数学当成枯燥的数字运算。留学群整理了小论文:生活中的数学,欢迎阅读。
在一个明媚的周末,我和爸爸妈妈一起去商场买东西。“啊!商场可真大啊!”我不禁地赞叹道。我先来到玩具店,这里的洋娃娃长得可真是小巧玲珑,非常可爱。突然,我发现一些非常奇怪的形状,我就像篱弦的箭一样飞奔过去,那里可真是琳琅满目,多种形态各异的形状浮现在我的眼前。这时,爸爸边指着图形边问我:“这是什么图形啊?”我急说:“是长方体!”爸爸又问:“那你知道长方体的计算公式吗?”我皱起眉头,想了不知多少时间,可还是一窍不通。这时,一个干脆而又高亮的声音回响在我的耳边,原来是妈妈。妈妈温柔的说:“长方体的体积公式很简单,只要用长×宽×高,不信你就举个列子试试,你看,如果用v表示长方体的体积,用a、b、h分别表示长方体的长、宽、高。上面的公式可以写成:v=abh。”妈妈的话音刚落下,我便恍然大悟地说:“哦,我明白了,长方体的体积公式和圆柱形的体积公式是一样的,都是用长×宽×高的。”“我的宝贝女儿终于明白了做题目一定要自己思考,还要仔细做题。”说着,妈妈不禁流出了感动的泪水。在这一天中的购物,使我明白了许多的道理。
以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。然而,有一件事却改变了我的看法。那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个‘数学博士’也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。””耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以0.8,也就是35*0.8=28(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的...
认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。留学群整理了五年级数学小论文:勾股定理,欢迎阅读。
五年级数学小论文:勾股定理
1、证明一个三角形是直角三角形
2、用于直角三角形中的相关计算
3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)
来源:
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
...11-28
四年级奥数年龄问题是个很有趣的数学题,留学群整理了四年级数学小论文:年龄问题,来看看作者是怎么算出来的吧。
年龄问题
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3-1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
以下是留学群编辑为您整理的四年级数学小论文,供您参考,更多详细内容请点击留学群(www.liuxuequn.com)查看。
在我学习数学中,会遇到许多问题,比如说:能被2、3、5整除的数有什么规律;又比如说:求最大公约数和最小公倍数有没有什么简便算法,这些,都需要我慢慢学习,在数学的海洋中探索!
经过查找资料,和同学讨论,并结合书本,我了解到,个位上是0、2、4、6、8的数可以被2整除。个位上是0或5的数都可以被5整除。各个位上的数加起来的和能不能被3整除,就知道,这个数能不能被3整除。
通过学习求两组数的最大公约数,我发现了如果两个数成倍数情况,那么最大数就是这两个数的最小公倍数。如果两个数成互质数情况,那么这两个数的积就是这两个数的最小公倍数。
数学的天空色彩斑斓,那是理性之光射向艺术殿堂产生的美景。我在数字中遨游,在数字中学习,捕获更多的数学知识在现实中应用。虽然有时会遇到困难,但是只要努力去学习,去和同学们讨论,和老师交流,一定会发现规律,解决问题!
暑假里,我到外公家玩,受到了外公的热情招待。外公家如今仍烧着大锅,他每次都用很多木材来烧。
一天,外公将一大堆木材抱出来,笑着对我说:“小亮,外公考你一个问题。”我信心十足的答应了。外公说:“我手里这根木材大约3米长,我想把它锯成20段,你看我要锯几次?”听完问题,我心里乐开了花,太简单了。我从外婆那要了一把皮尺,先算好每段的长度(3米=300厘米,300÷20=15厘米)于是我拿着皮尺一段段的量,忙活了很久才知道要锯19次。
站在一旁的表哥着急地说:“你这么算多费时间啊。如果我要把3米的木头锯3段,需锯几次?”我想了想回答两次。表哥问:“你如何算的?”我答道:“用段数3减去1就等于要锯的次数啊。”表哥笑了笑说:“对呀,要锯4段,5段,6段······依次类推啊。这么算不就节省了很长时间吗?爷爷给你出的这道题,有很多解决的方法,但你要善于找到最简便的方法。这就需要你开拓思维,从智解题啊。”我若有所悟的点了点头。
我从这件事中明白:生活处处有数学,只要我们勤思勤问就能收获更多的知识。
我们每个人都有一双灵巧的手,干什么事似乎都离不开它。在幼儿园老师就教我们用手指认数,那时候我们常常利用一双手的十个手指来计算10以内的加减法。现在,我们虽然不需要用它来计算简单的加减法了,但是有时候我们在做一些数学题目时还是会用到它,比如,我们在三年级学习“年月日”时,用它来帮我们记忆大月和小月。
有一次,我在看《趣味数学》时,遇到一道题目:一个小孩在数手指,他按这样的顺序数:大拇指,食指,中指,无名指,小指,无名指,中指,食指,大拇指„„请问,第36个是哪个手指?
一开始我有点儿摸不着头脑,不知道如何下手。突然,我想到了自己的一双手,何不用手指掰一掰呢?于是,我就用一只手按照题目的要求掰了起来。不一会儿,我就找到了答案:第36个一定是无...
以下是留学群编辑为您整理的数学小论文600字,供您参考,更多详细内容请点击留学群(www.liuxuequn.com)查看。
大家一定知道高斯,也一定知道他算出从1加到100是多少,今天,我有一个数学题,要和大家一起讨论。
有一天,我正在玩耍,突然想起了一道题:201+202+203+......+300是多少?我拿起纸和笔开始算,201+202是403,403+203是606…...实在太难算了,我又想:201和202它们只要把200去掉,下面的不就是1+2+3+.…..+100了吗?我们知道了1+2+3+……+100是5050,那下面的不就有100个200了吗,20000+5050,就是25050,我以为是对的,就不管他了。
后来,从我200×100就是20000,拿上数学课那儿知道:1+2+3+4:1+4=5,2+3=5,一共有4个数字,拿4/2=2,2再乘5=10,我算了一下,是对的,我又自己做:2+3+4+5,2+5=7,3+4=7,有4个这样的数,4/2=2,2×7=14,我又验算:2+3=5,5+4=9,9+5=14,呀!是对的。
我又想起了我算201+202+203……的那题,我验算一下:201+300=501,202+209=501,有100个这样的501,然后就是100/2=50,50×501=25050,嘿!是对的,我又掌握了一种简便算法!
同学们,只要你们肯动手,什么事都可以做成的,那..….301+302+303+......400,你们知道是多少吗?
数学的知识海洋是无穷尽的,学习数学的过程也韵味无穷。今天,一道有趣的数学题引起了我的注意,于是,我叫妈妈来一起思考这道题。
题目如下:某区举行小学生春季运动会,其中某校参加的人数占运动员总人数的十五分之一;若这个学校再去10名运动员,则该校人数占运动员总人数的二十三分之二。问这次运动会共有运动员多少人?这个学校有多少人参加运动会?
妈妈看到这道题后,二话不说,立马用方程来解。设原来共有运动员X人参加,那么现参赛总人数为(X + 10),根据“原来参赛总人数 × 1/15 + 10 = 现在参赛总人数 × 2/23”的关系式得出X = 450,那么最终的答案就是:这次运动会共有460人参加,这个学校有40人参加小学生作文--数学小论文600字小学生作文--数学小论文600字。
我承认,在解方程的熟练程度方面,我还不如妈妈;但是,难道这道题就只能用解方程这一种方法来求解吗?数学老师在课堂上说过:掌握了比例法,可以使问题简单化,甚至可以把六年级的数学题变为二年级的那么简单!这道题目中有变量,也有不变量。哈哈,这时候我的脑海中浮现出“以不变量或者中间量做单位1”而用比例法求解。对于这道题,不变量是其他学校的参赛人数,。所以,用11/15 = 14/15算出原来这个学校和其他学校的人数比例是1:14。然而这个学校增加10人后,那总人数也就增加10人,所以用1 - 2/23 = 21/23算出现在这个学校和其他学校的人数比例...
以下是留学群编辑为您整理的数学小论文500字,供您参考,更多详细内容请点击留学群(www.liuxuequn.com)查看。
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3-1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
今天是周末我不上课,刚好姐姐又来了,所以我们准备去爬紫金山。
我和姐姐爬到半山腰时因为太累了,所以坐下来休息了一会儿。这时我突然想到了一个问题,我就问姐姐:“姐姐我问你一个问题,小敏和小红一起爬山。山一共有1000个台阶,小敏每分钟走65个台阶,小红每分钟走60个台阶。
她们一起从山脚往上爬,问多少分钟后她们第一次相遇?”
“这还不简单。”姐姐说。
过了一会,我问姐姐:“姐姐好了吗?”
“呃~~~,我没草稿纸,不会。”
其实我知道是姐姐比较浮躁,才没想到的,要不然她怎么会连这么简单的问题都不会。我见姐姐有一点不耐烦了,我就说“姐姐,你想1000个台阶,小敏和小红要想相遇的话,小敏就要从山脚走到山顶再回头才能和小红相遇,用1000x2=2000(个)算出一共有2000个台阶,在算65+60=125(个)算出两人一分钟能走125个台阶,最后用2000除以125等于16(分钟)算出16分钟后她们第一次相遇。”
“这么简单,看来我想的复杂了。”姐姐说。
休息了一会我们就继续向着终点前进了。
这学期妈妈给我报名参加了一个奥数班,是在每个星期天的早上上的,这个早上我们学了第5讲 流水问题,课后还布置了一题作为家庭作业,柴老师说: 当天的作业当天做完,头脑的思绪最为清晰。 所以我回到家早早的就开始做。
这题的题目是:甲乙两港间的水路长252千米,一艘船从甲港开往乙港,顺水9小时到达,从乙港返回甲港,逆水14小时到达。求船在静水中的速度和水流速度?
我盯着题目努力理解题意,手...
以下是留学群编辑为您整理的五年级数学小论文,供您参考,更多详细内容请点击留学群(www.liuxuequn.com)查看。
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种……当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,86×84=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,8×9=72,末尾4×6=24,8×9的结果是积的百位和千位,4×6的结果是积的十位和个位。这题的积是7224。第二题,34×52,属于第三种,可以将它乘法变加法,三步完成,第一步,2×4=8,个位相乘,积的末尾为8。第二步用4×5+3×2=26,交叉相乘加起来,写6进2。第三步,十位相乘3×5=15,15加进的2,等于17,这题的积是1768。第三题,68×48,属于第二种,十位数相加等于10,个位数字相同。用6×4=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,8×8=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5÷1=5 30×5=150(小时) 200小时>150小时
还可以这样算:
5÷1=5 200÷5=40(小时) 30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的"百分数″来算:
5/200×100=0.025×100=2.5
1/30×100≈0.033×100=3.3
3.3>2.5
或者这样算:
200/5×...
数学小论文推荐访问