留学群有理数课件

留学群专题频道有理数课件栏目,提供与有理数课件相关的所有资讯,希望我们所做的能让您感到满意!

有理数的加法课件

 

  在这篇文章中,我们将深入探讨有关"有理数的加法课件"的相关话题。作为教师,编写教案和课件是必不可少的任务,因此在撰写时切勿草率。一个经过精心制作的教案能够引导学生主动学习。我建议你收藏并分享给其他有需要的朋友!

有理数的加法课件【篇1】

  教学目标:

  1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

  2、培养学生观察、比较、归纳及运算能力。

  重点:有理数加法运算律及其运用。

  重点:灵活运用运算律

  教学过程:

  一、创设情境,引入新课

  1、小学时已学过的加法运算律有哪几条?

  2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

  3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;

  (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

  二、讲授新课

  教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?

  (学生回答省略)

  师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

  讲解例3

  教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)

  三、巩固知识

  教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?

  师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。

  四、总结

  本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

  五、布置作业

有理数的加法课件【篇2】

  一. 教材的地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运...

有理数的乘法课件

 

  教师的工作之一是编写自己的教案和课件,但是教师也应该清楚,这不是一项随意写写的工作。通过课堂反馈,可以得出学生的思维方式和逻辑,所以,什么样的教案和课件才能算是好的呢?以下是本页面关于“有理数的乘法课件”的内容,希望对您有所帮助!

有理数的乘法课件【篇1】

   教学目标

  1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

   教学建议

   (一)重点、难点分析

  本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

   (二)知识结构

   (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

有理数的乘法课件【篇2】

  积的符号 ;

  积的符号 。

  2完成下面填空:

  (2)(-10)×(- )×(-0.1)× 6 =________

  (3)(-10)×(- )×(-0.1)×(-6)=________

  (4)(-5)×(- )× 3 ×(-2)× 2=________

  (5)(-5)×(-...