留学群考研数学概率常考题型

留学群专题频道考研数学概率常考题型栏目,提供与考研数学概率常考题型相关的所有资讯,希望我们所做的能让您感到满意!

2020考研数学复习:概率常考题型汇总

 

  考研备考时间已然快要过半,还在为了备考方法焦灼?不用担心!老司机带你上车,下面由留学群小编为你精心准备了“2020考研数学复习:概率常考题型汇总”,持续关注本站将可以持续获取更多的考试资讯!

2020考研数学复习:概率常考题型汇总

  (1)确定事件间的关系,进行事件的运算;

  (2)利用事件的关系进行概率计算;

  (3)利用概率的性质证明概率等式或计算概率;

  (4)有关古典概型、几何概型的概率计算;

  (5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;

  (6)有关事件独立性的证明和计算概率;

  (7)有关独重复试验及伯努利概率型的计算;

  (8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;

  (9)由给定的试验求随机变量的分布;

  (10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;

  (11)求随机变量函数的分布(12)确定二维随机变量的分布;

  (13)利用二维均匀分布和正态分布计算概率;

  (14)求二维随机变量的边缘分布、条件分布;

  (15)判断随机变量的独立性和计算概率;

  (16)求两个独立随机变量函数的分布;

  (17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;

  (18)求随机变量函数的数学期望;

  (19)求两个随机变量的协方差、相关系数并判断相关性;

  (20)求随机变量的矩和协方差矩阵;

  (21)利用切比雪夫不等式推证概率不等式;

  (22)利用中心极 限定理进行概率的近似计算;

  (23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;

  (24)推证某些统计量(特别是正态总体统计量)的分布;

  (25)计算统计量的概率;

  (26)求总体分布中未知参数的矩估计量和极大似然估计量;

  (27)判断估计量的无偏性、有效性和一致性;

  (28)求单个或两个正态总体参数的置信区间;

  (29)对单个或两个正态总体参数假设进行显著性检验;

  (30)利用χ2检验法对总体分布假设进行检验。

  推荐阅读:

  2020考研数学复习:线性代数常考题型汇总

<...

2018年考研数学概率重难点及常考题型

 

  出国留学考研网为大家提供2018年考研数学概率重难点及常考题型,更多考研资讯请关注我们网站的更新!

  2018年考研数学概率重难点及常考题型

  总结考研中的常考题型,有助于我们更好的复习考试重点,对常考题型进行重点突破,争取在考场上拿到更多的分数,下面我们一起来看看考研数学中概率的重难点梳理及常考题型总结。

  ▲随机变量及其分布

  重点难点

  重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布

  难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布

  常考题型

  (1)分布函数的概念及其性质

  (2)求随机变量的分布律、分布函数

  (3)利用常见分布计算概率

  (4)常见分布的逆问题

  (5)随机变量函数的分布

  ▲假设检验(数学一)

  1.定义:先对总体的分布中某些未知参数作某种假设,然后由所抽取的样本,构造合适的统计量,对所提出的假设作出判断:是接受还是拒绝,就称为假设检验。

  大纲仅要求对总体分布函数中的未知参数提出假设并作检验,称为参数的假设检验。

  2.假设检验的基本原理——小概率事件的实际不可能性原理(简称小概率原理)。

  假设检验的推断原理是小概率事件的实际不可能原理即小概率原理,推断方法是概率性质的反证法。

  所谓小概率事件原理是指人们根据长期的经验坚持这样一个信念:概率很小的事件在一次实际试验中是不可能发生的。如果在一次试验中小概率事件居然发生了,人们仍旧坚持上述信念,而宁愿认为此事件的前提条件起了变化,即认为假设和实际有矛盾,从而否定假设。

  因此,假设检验实际上是一种反证法,即概率性质的反证法。具体地讲,它是指首先提出假设,然后根据一次抽样所得的样本值进行计算,后按照一定的概率标准对假设作出鉴别:若小概率事件发生,则否定假设;若小概率事件未发生,则认为假设是可以接受的。

  重点难点

  重点:单个正态总体的均值和方差的假设检验

  难点:假设检验的原理及方法

  常考题型

  单正态总体均值的假设检验

  ▲大数定律和中心极限定理

  重点难点

  重点:中心极限定理

  难点:切比雪夫不等式、依概率收敛的概念。

  常考题型

  (1)大数定理

  (2)中心极限定理

  (3)切比雪夫(chebyshev)不等式

  ▲随机事件与概率

  重点难点:

  重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式

  难点:随机事件的概率,乘法公式、全概率公式、bayes公式以及对贝努利概型的事件的概率的计算

  常考题型:

  (1)事件关系与概率的性质

  (2)古典概型与几何概型

  (3)乘法公式和条件概率公式

  (4)全概率公式和bayes公式

  (5)事...