留学群专题频道行测排列组合题技巧栏目,提供与行测排列组合题技巧相关的所有资讯,希望我们所做的能让您感到满意!
本文“行测排列组合新思路:不选也是一种方法”由留学群编辑整理,欢迎查看。
例1:小臣周末要去参加同学聚会,衣柜里面有帽子3顶,上衣4件,裤子5条,现在要搭配一套衣服,上衣和裤子必选,帽子可选可不选,问共可以搭配多少套衣服?
A.12种 B. 60种 C.80种 D. 120种
【答案】C。
【中公解析】
法一:根据题意,上衣和裤子必选,帽子可选可不选,可以分成两类,一种情况选帽子,则帽子、上衣、裤子各选一件,有3×4×5=60种方法,另一种情况为不选帽子,则上衣、裤子中选一件,有4×5=20种方法,总共60+20=80种方法。
法二:根据题意,帽子有可选和不选2类情况,若把不选看做1种情况数,可选3种,帽子总共3+1=4种情况,且上衣必选4种情况,裤子必选5种情况,故总共4×4×5=80种套衣服可搭配。
对比发现,法二相对法一,运算结果一样,但列式简单,用到了一种新的思想—不选也是一种选择情况,但其实两种方法的本质是一样的,法一中不选帽子的列式4×5=20,即1×4×5=20,将不选看做了1种情况。所以,以后大家再遇到类似选择分配的题目,可以大胆尝试这种新思想。
例2:某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?
A.7种 B. 12种 C.15种 D. 21种
【答案】C。
【中公解析】
法一:按照种类的不同分四类,相加
。
法二:每种学习报有订或不订2种方法,总方法为2×2×2×2=16,又要求每人至少一种,最多四种,故需排除4种都不订的方法数1,结果为16-1=15。
例3:有A、B、C三台不同机器,甲、乙、丙、丁四名操作人员的技术等级各不相同,甲、乙两人这三台机器均能操作,丙不能操作C机器,丁只能操作A机器。从这四名操作人员中选出3人分别操作这三台机器,问不同的选派方法有多少种?
A.12 B.8 C.6 D.4
【答案】B。
【中公解析】
法一:分类讨论,第一类,不选丁,选择甲、乙、丙,有
=4种选法;第二类,选丁,(1)选丙,有2种选法;(2)不选丙,有
=2种选法。根据分类相加,共有4+2+2=8种选法。法二:把不选也看作一种方法,再加一台机器D,分步进行:丁可以选A或D机器,2种方法,丙除了C机器和...
下面是留学网小编收集整理的行测排列组合题技巧:“分类分步”,欢迎参考。
分类分步思想,是分类讨论思想与分步讨论思想的总称,其不仅仅是行测考试当中需要重点掌握的思想之一,也是我们日常生活中的一种常用思想。
分类讨论思想具体指,在集合A上讨论某一数学问题时,可以根据某个标准P,把A划分为互斥子类
的并集,并将所讨论的问题转换为在
的并集上讨论的一种思想。即为了解题将问题划分为几种情况,使条件具体化,使难点分散;对每种情况分别讨论,各个击破;最后归纳概括,使整个问题获解。比如说,当大家想要成为公务员的时候就会考虑有哪几种方法可以实现我们的目标,可以通过考录的形式,也可以通过选任、聘任、调任、军转安置等形式,这就是对解决问题的方法进行了分类。而有时在讨论某一数学问题B时,可以根据内部规律P,把B划分
为总共n个步骤,只有
逐一并全部完成时所讨论的问题B才能完成。这种将对问题B的讨论转化为对
的讨论的思想即为分步讨论思想。即把解题的过程分化成有序的几个步骤,第一步实现问题的部分中间状态,顺次实现所有的中间状态,从而获得问题的最终解决。例如,当我们最终选择了通过考录的形式成为公务员时,接下来就要考虑第一步应该参加笔试,第二步应该参加面试,第三步应该参加体检……,最终就能够达成我们成为公务员的目标。
分类分步思想对于行测考试来讲更是一种极为重要的解题思想,无论是言语问题、逻辑问题还是资料分析问题在分类分步思想的指导下都可以迎刃而解,它几乎可以说是贯穿整个行测考试的一种重要思想。特别是在数学运算中,用分类分步的思想来解决让众多考生“望而生畏”的排列组合等问题,可以说是又“快”又“准”!
在求方法数的问题中,即当题目的问法出现“有多少种不同的选择方案”、“有多少种不同的分配方式”、“有多少种不同的组合情况”等字眼时,通常需要采取分类分步的思想来解决问题,此时需要注意的是分类思想用加法计数原理,分步思想用乘法计数原理。
例1:有两个三口之家一起出行去旅游,他们被...
行测排列组合题技巧推荐访问