留学群专题频道行测立体几何栏目,提供与行测立体几何相关的所有资讯,希望我们所做的能让您感到满意!
在考场上人与人拉开差距的除了平常的知识点的积累,还有面对考试题型能够有一个更好的解答思路,下面由留学群小编为你精心准备了“行测数量关系技巧:立体几何之立体表面最短路径”,持续关注本站将可以持续获取更多的考试资讯!
行测数量关系技巧:立体几何之立体表面最短路径
几何问题在近几年的公职类考试中频频出现,不论是在公务员考试的行测中,还是事业单位联考的职业能力测验中,经常能看到几何问题的身影,尤其是在近几年的国考中,几何问题更是热门考点。几何问题主要测查我们对于平面几何、立体几何的理解以及对相关公式的掌握,其实这些知识在小学和中学就已经是我们所接触学习过的了。所以几何问题的备考,更多地是复习和回顾,做题过程也是公式和方法的应用过程。
今天主要来说一下几何问题中的立体表面最短路径问题。立体几何相比较平面几何,不仅需要我们对计算表面积和体积的公式要熟悉,还需要我们有一定的空间想象能力,通过不断练习对图形的把握感要逐渐地强化。立体表面的最短路径问题,就是需要对原来的立体图形作一定地变形,把需要空间想象的立体几何转化为更为清晰直观的平面几何。接下来我们就通过两个例子看一下如何进行转化。
例如:一只蚂蚁在棱长为1的正方体的顶点A沿表面爬行到顶点B,那么爬行的最短距离是多少?
我们发现,要想爬行距离最短,尽量朝着B走直线,但在一个立体的表面,这个直线路径该怎么画出来就需要很强的空间想象能力了,更不要说还要计算出来结果。但如果能够把立体几何转化为一个平面几何,题目就变得简单明了了。我们可以把右面的面翻到与正前方的面平齐(或把上方的面翻到与正前方的面平齐)。如下图所示:
通过简单的转换,就可以绕过空间想象,把立体图形转变为简单易解的平面图形,题目也就迎刃而解了。希望通过上面的两个例子,能给同学们一点启发,把握好此类题目的解题方法,通过适当练习,对方法以及几何所涉及的公式都进行练习和掌握,攻克几何问题。
推荐阅读:
近几年,在国家公务员考试中经常涉及几何问题。在数学运算题型中,几何问题包含两种题型:平面几何问题和立体几何问题。为了便于分析和计算,多数立体几何问题需要转化到平面上进行求解,关注和学习相关的平面几何知识是解决立体几何问题的基础。平面几何知识较为简单,易于掌握,而立体几何问题较为复杂,考生需要掌握更复杂的计算公式和一定的空间想象能力,难度较大。解决此类题型的技巧方法一一详解如下:
一、 球、圆柱与锥体
平面图形通常要计算周长、面积,对立体图形则计算表面积、体积。
二、正多面体
正多面体指各面都是全等的正多边形且每个顶点所接面数都是一样的凸多面体。这个定义有两个要点①每个面全等;②顶点所接面数均相等。如正方体每个面都是全等的正方形;每个顶点都接3个面,所以它是正六面体。
在《几何原本》3 的最后一卷(第13卷)中,欧几里得给出了五个正多面体的做法,并且证明只存在这五个正多面体。它们是:
考生需要着重掌握前三个正多面体,因为这三个正多面体易于计算与想象,真题多有涉及。
【例题2】 连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘米,问正八面体的体积为多少立方厘米?
解析:此题的一般思路是在脑海中搜寻正八面体的体积计算公式,而这个公式我们不常用。
从方法优化来看,解决复杂体积问题的核心是将其转化为简单几何体进行计算。
由图不难看出,正八面体可以看成由上下(或左右)两个椎体(是正四面体)组成。锥体的高等于正方体棱长的一半,为3;锥体的底面是正方体四面中心的连线,面积等于正方
【例题3】 一个正八面体两个相对的顶点分别为A和B,一个点从A出发,沿八面体的棱移动到B位置,其中任何顶点最多到达1次,且全程必须走过所有8个面的至少1条边,问有多少种不同的走法?( )
A.8 B.16 C.24 D.32
解析:如图所示,把这个正八面体的各顶点标记。从A点出发沿...
行测立体几何推荐访问