留学群高中数学函数

留学群专题频道高中数学函数栏目,提供与高中数学函数相关的所有资讯,希望我们所做的能让您感到满意!

高中数学函数解题技巧有哪些

 

  高中数学有几个模块是我们必须要学习的,比如说函数这一模块,可以说贯穿我们的高中数学,函数是有着一定的解题技巧的,可以在留学群上进行学习,那么高中数学函数解题技巧有哪些呢?

  高中数学函数解题技巧

  1,复习函数的性质,可以从数和形两个方面。从理解函数的单调性和奇偶性的定义入手。在判断和证明函数的性质的问题中得以巩固,在求复合的数的单调区间,函数的最值及应用问题的过程中得以深化。

  2,具体要求是:正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性;从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用。归纳总结求函数最大值和最小值的常用方法。培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力。

  3,这部分内容的重点是对函数单调性和奇偶性定义的深入理解。函数的单调性只能在函数的定义域内来讨论。函数y=f(x)在给定区间上的单调性。反映了函数在区间上函数值的变化趋势。是函数在区间上的整体性质。但不一定是函数在定义域上的整体性质。函数的单调性是对某个区间而言的,所以要受到区间的限制。

  4,对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(一x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称,这是函数具备奇偶性的必要条件。稍加推广,可得函数 f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立,函数的奇偶性是其相应图象的特殊的对称性的反映。

  以上就是关于高中数学函数解题技巧的相关介绍,对此还想了解更多解题技巧的同学们,可以选择直接上留学群去进行了解和学习。

  推荐阅读:

  高中数学函数解题技巧与方法

  高中数学排列组合解题技巧

  高中数学解答题解题技巧思考

  初中数学函数解题技巧

  高一数学函数解题技巧

...

高中数学函数解题技巧与方法

 

  高中数学函数的问题类型多种多样,留学群小编认为想要在函数问题上拿分,就很有必要掌握一些解题技巧与方法。下面就跟着一起来了解一下高中数学函数解题技巧与方法有哪些?

  1、建立函数基础题型和基本问题解法库,知识结构和内容都理清记牢了,我们要进行实战了,和知识点一样,每个模块分出几种基本函数题型,和几个特殊问题的专题。

  2、对一种函数题型,一定要看会例题或者听懂老师讲解之后,再按老师的解法做同类型的问题。不要搞创新,或者守着自己偏颇的解题方法不放弃。我不反对题海战术,但是你要把海选准,哪种题型不会再往相应的题海里钻,已经很熟练的题型就少练一些。也就是所谓的针对性,重点要突出。并且在做的过程中要不断总结反思,否则你就算游进太平洋也不会有提高。对于一种题型没掌握,就反复练,一道不会五道,五道不会十道。不要怀疑自己智商不在线,只要运用老师给的解题方法,多次练习一定会精通。

  3、用教师的思维模式解题。有同学会问我这样的问题:老师,这道题您是怎么想到这种解法的,为什么我想不到?作为老师也有同样的疑问,为什么一些简单的问题学生偏偏找不到解法。所以我觉得有必要把我们教师的解题模式告诉大家,因为考试题是老师出的,掌握了老师解题的思维过程,会帮助学生在考场上瞬间抓住命题人的意图和考点。也不是很高深的技巧,只是一种思维模式。

  以上就是留学群小编带来的高中数学函数解题技巧与方法有哪些?掌握了以上解题技巧与方法,相信以后高中数学函数问题再也难不倒大家!

  推荐阅读:

  高中数学排列组合解题技巧

  高中数学解答题解题技巧思考

  初中数学函数解题技巧

  高一数学函数解题技巧

  高中数学学习方法及技巧(实用)

...

高中数学函数的定义域及值域

 

  高中数学函数的定义域及值域是怎样的,同学们有去认真了解过吗,没有的话,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“高中数学函数的定义域及值域”,仅供参考,欢迎大家阅读。

  高中数学函数的定义域及值域

  定义域

  (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A.其中,x叫作自变量,x的取值范围A叫作函数的定义域;

  值域

  名称定义

  函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

  常用的求值域的方法

  (1)化归法;(2)图象法(数形结合),

  (3)函数单调性法,

  (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等

  关于函数值域误区

  定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的'位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

  “范围”与“值域”相同吗?

  “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

  拓展阅读:高中必修三数学知识点总结

  第一章 算法初步

  算法的概念

  算法的特点:

  (1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.

  (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

  (3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.

  (5)普遍性:很多具...

高中数学函数知识点归纳

 

  高中数学函数知识点同学们归纳总结过吗,没有的话,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“高中数学函数知识点归纳”,仅供参考,欢迎大家阅读。

  高中数学函数知识点归纳

  (一)、映射、函数、反函数

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

  注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

  ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

  (二)、函数的解析式与定义域

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这...