留学群高中数学知识点总结

留学群专题频道高中数学知识点总结栏目,提供与高中数学知识点总结相关的所有资讯,希望我们所做的能让您感到满意!

2022高中数学知识点总结大全(非常全面)

 

  在高考复习数学时,如果没有系统的总结,复习效率就会大打折扣。下面是由留学群编辑为大家整理的“2022高中数学知识点总结大全(非常全面)”,仅供参考,欢迎大家阅读本文。

  高中数学知识点总结1

一、高中数列基本公式:

  1、一般数列的通项an与前n项和Sn的关系

  2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

  3、等差数列的前n项和公式,当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

  4、等比数列的通项公式: an= a1qn-1an= akqn-k

  (其中a1为首项、ak为已知的第k项,an≠0)

  5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  高中数学知识点总结2

  一、求动点的轨迹方程的基本步骤

  ⒈建立适当的坐标系,设出动点M的坐标;

  ⒉写出点M的集合;

  ⒊列出方程=0;

  ⒋化简方程为最简形式;

  ⒌检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  ⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  ⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  ⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

  高中数学知识点总结3

  一、直线与方程高考考试内容及考试要求:

  考试内容:

  1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

  2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

  考试要求:

  1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

  2.掌握两条直线...

高考数学最易失分知识点

 

  留学群高考网为大家提供高考数学最易失分知识点,更多高考资讯请关注我们网站的更新!

  高考数学最易失分知识点

  集合与简单逻辑

  1.易错点遗忘空集致误

  错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

  2.易错点忽视集合元素的三性致误

  错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

  3.易错点四种命题的结构不明致误

  错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

  这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

  另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

  4.易错点充分必要条件颠倒致误

  错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

  5.易错点逻辑联结词理解不准致误

  错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:

  p∨q真<=>p真或q真,

  p∨q假<=>p假且q假(概括为一真即真);

  p∧q真<=>p真且q真,

  p∧q假<=>p假或q假(概括为一假即假);

  ┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

  函数与导数

  6.易错点求函数定义域忽视细节致误

  错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

  在求一般函数定义域时要注意下面几点:

  (1)分母不为0;

  (2)偶次被开放式非负;

  (3)真数大于0;

  (4)0的0次幂没有意义。

  函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

  7.易...

高中数学知识点总结

 

  想要高考取得好的成绩,高中的复习是至关重要的,在这里,留学群小编为大家整理了高中数学知识点总结,希望能够帮各位高三学生更好的复习,如果觉得本网站内容有用,欢迎收藏(Ctrl+D即可)。

  【解析几何】

  1、直线

  两点距离、定比分点 直线方程

  |AB|=| |

  |P1P2|=

  y-y1=k(x-x1)

  y=kx+b

  两直线的位置关系 夹角和距离

  或k1=k2,且b1≠b2

  l1与l2重合

  或k1=k2且b1=b2

  l1与l2相交

  或k1≠k2

  l2⊥l2

  或k1k2=-1 l1到l2的角

  l1与l2的夹角

  点到直线的距离

  2.圆锥曲线

  【圆 椭 圆】

  标准方程(x-a)2+(y-b)2=r2

  圆心为(a,b),半径为R

  一般方程x2+y2+Dx+Ey+F=0

  其中圆心为( ),

  半径r

  (1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系

  (2)两圆的位置关系用圆心距d与半径和与差判断 椭圆

  焦点F1(-c,0),F2(c,0)

  (b2=a2-c2)

  离心率

  准线方程

  焦半径|MF1|=a+ex0,|MF2|=a-ex0

  双曲线 抛物线

  双曲线

  焦点F1(-c,0),F2(c,0)

  (a,b>0,b2=c2-a2)

  离心率

  准线方程

  焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0)

  焦点F

  准线方程

  坐标轴的平移

  这里(h,k)是新坐标系的原点在原坐标系中的坐标。

  【复数】

  代数形式 三角形式

  a+...