留学群专题频道三元一次方程组的解法栏目,提供与三元一次方程组的解法相关的所有资讯,希望我们所做的能让您感到满意!
11-17
三元一次方程组在初中数学中是一个重点,每次考试都有出现相关题目。下面是由留学群编辑为大家整理的“三元一次方程组的解法有哪些 什么时候学的”,仅供参考,欢迎大家阅读本文。
三元一次方程组
如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的`方程组叫做三元一次方程组。
三元一次方程组的解法
三元一次方程组的解题思路主要是应用消元法。
一般三元一次方程都有3个未知数x,y,z和3个方程组,先化简题目,将其中一个未知数消除,先把第1和第2个方程组平衡后相减,就消除了第一个未知数,再化简后变成新的二元一次方程。
然后把第2和第3个方程组平衡后想减,再消除了一个未知数,得出一个新的二元一次方程,之后再用消元法,将2个二元一次方程平衡后想减,就解出其中一个未知数了。
再将得出那个答案代入其中一个二元一次方程中,就得出另一个未知数数值,再将解出的2个未知数代入其中一个三元一次方程中,解出最后一个未知数了。
三元一次方程组什么时候学的
三元一次方程组的学习时间是人教版初中七年级下册。
...
三元一次方程组的解法有哪些呢?同学们清楚吗,不清楚的话,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“三元一次方程组的解法有什么”,仅供参考,欢迎大家阅读。
三元一次方程组的解法举例
【目的与要求】
1.了解三元一次方程组的概念;熟练掌握简单的三元一次方程组的解法;能选择简便,特殊的解法解特殊的三元一次方程组.
2.通过用代入消元法,加减消元法解简单的三元一次方程组的训练及选择合理,简捷的方法解方程组,培养运算能力.
3.通过对方程组中未知数系数特点的观察和分析,明确三元一次方程组解法的主要思路是
"消元",从而促成未知向已知的转化,培养和发展逻辑思维能力.
4.通过三元一次方程组消元后转化为二元一次方程组,再消元转化为一元一次方程及将一些代数问题转化为方程组问题的方法的学习,培养初步运用转化思想去解决问题,发展思维能力.
【知识要点】
1.三元一次方程组的概念:
含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组.
例如:
都叫做三元一次方程组.
注意:每个方程不一定都含有三个未知数,但方程组整体上要含有三个未知数.
熟练掌握简单的三元一次方程组的解法
会叙述简单的三元一次方程组的解法思路及步骤.
思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法.
步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
②解这个二元一次方程组,求得两个未知数的值;
③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把
这三个数写在一起的就是所求的三元一次方程组的解.
灵活运用加减消元法,代入消元法解简单的三元一次方程组.
例如:解下列三元一次方程组
分析:此方程组可用代入法先消去y,把①代入②,得,
5x+3(2x-7)+2z=2
5x+6x-21+2z=2
解二元一次方程组,得:
把x=2代入①得,y=-3 ∴
例2.
分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简单的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z比较简单.
解:①+②得,5x+y=26④
①+③得,3x+5y=42⑤
④与⑤组成方程组:
解这个方程组,得
把代入便于计算的方程③,得z=8
注意:为把三元一次方程组转化为二元一次方程组,原方程组中的每个方程至少要用一次.
能够选择简便,特殊的解法解特殊的三元一次方程组.
例如:解下列三元一次方程组
分析:此方程组中x,y,z出现的次数相同,系数也相同.根据这个特点,将三个方程
的两边分别相加解决较简便.
解:①+②+③得:2(x+y+z)...
二元一次方程组已经让人非常头痛了,现在又有一个三元一次方程组。那么怎么解三元一次方程组呢,三元一次方程组有哪些解法呢?下面是由留学群小编为大家整理的“三元一次方程组的解法有哪些”,仅供参考,欢迎大家阅读。
三元一次方程组的解法有哪些
三元一次方程组的解法是:通过“代入”或“加减”进行消元,将“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
三元一次方程组
如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。方程组中,少于3个方程,则无法求所有未知数的解,故一般的三元一次方程是三个方程组成的方程组。三元一次方程组常用的未知数有x,y,z。三元一次方程组的解题思路主要是应用消元法。2三元一次方程组的解法
主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。其思路都是利用消元法逐步消元。步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
拓展阅读:三元一次方程组的定义
定义如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一次,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。解法他们主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。其思路都是利用消元法逐步消元。 [1] 概念含有三个相同的未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程(有时会有特例),叫做三元一次方程组。
三元一次方程组解法举例
y=ax²+bx+c
当x=1时,y=3,式子可以写为a+b+c=3 记为方程式 1
当x=2时,y=-1,式子可以写为4a+2b+c=-1 记为方程式 2
当x=3时,y=15,式子可以写为9a+3b+c=15 记为方程式 3
方程式2-1得3a+b=-4 记为方程式4
方程式3-2得5a+b=16 记为方程式5
方程式5-4得2a=20
则得a=10 带入方程式4得b=-34 将a、b分别代入方程式1的c=27
得出a=10 b=-34 c =27 得方程为y=10x²-34x+27 由 x=5 得
y=107
...02-05
想要了解三元一次方程组的小伙伴,赶紧来瞧瞧吧!下面由留学群小编为你精心准备了“三元一次方程组的解法是什么”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
三元一次方程组的解法
主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。其思路都是利用消元法逐步消元。
步骤:
①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
②解这个二元一次方程组,求得两个未知数的值;
③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。
拓展阅读:三元一次方程组的概念
含有三个相同的未知数,每个方程中含未知数的项的次数都是一次,叫做三元一次方程组。方程组中,少于3个方程时,无法求所有未知数的解,这时叫做三元一次不定方程。
三元一次方程是几年级学的
三元一次方程是七年级学的。含有三个未知数并且未知数的的项的次数都是一,这样的整式方程叫做三元一次方程。共含有三个未知数的三个一次方程所组成的一组整式方程,叫做三元一次方程组。主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程组难解就用代入消元法,因题而异(与二元一次方程的解法相似)。通过消元后转化为二元一次方程组,再消元转化为一元一次方程,再解答。
...三元一次方程组的解法推荐访问