留学群专题频道三角函数栏目,提供与三角函数相关的所有资讯,希望我们所做的能让您感到满意! 在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数在我们高中的学习生涯中占据了很大一部分,很多考生都不太会做三角函数的题目,这是因为各位考生对三角函数的公式不够熟练。下面是小编为大家准备的“三角函数大全(2023高考试用)”,希望能够帮助到各位考生。
1.任意角的三角函数
注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段MP、OM、AT分别叫做角的正弦线、余弦线、正切线。
2.同角三角函数的基本关系式
3.诱导公式
4.二倍角公式
5.万能公式(可以理解为二倍角公式的另一种形式)
万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
三角函数对于各位朋友应该是最熟悉不过,不知道大家还记得三角函数的计算公式吗?今天就让留学群给大家分享一下三角函数诱导公式基础知识,想知道的朋友们进来文章学习一下吧。
诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 诱导公式有六组,共54个。
公式一到公式五函数名未改变, 公式六函数名发生改变。公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ+α)=sinα(k∈Z);
cos(2kπ+α)=cosα(k∈Z);
tan(2kπ+α)=tanα(k∈Z);
cot(2kπ+α)=cotα(k∈Z);
2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α)=-sinα;
cos(π+α)=-cosα;
tan(π+α)=tanα;
cot(π+α)=cotα;
3、公式三:任意角α与-α的三角函数值之间的关系
sin(-α)=-sinα;
cos(-α)=cosα;
tan(-α)=-tanα;
cot(-α)=-cotα;
4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα;
cos(π-α)=-cosα;
tan(π-α)=-tanα;
cot(π-α)=-cotα;
5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα;
cos(2π-α)=cosα;
tan(2π-α)=-tanα;
cot(2π-α)=-cotα;
6、公式六:π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα;
sin(π/2-α)=cosα;
cos(π/2+α)=-sinα;
cos(π/2-α)=sinα;
tan(π/2+α)=-cotα;
tan(π/2-α)=cotα;
cot(π/2+α)=-tanα;
cot(π/2-α)=tanα;
三角函数诱导公式有哪些?通过上面文章所给出的解答之后,各位同学们都应该清楚的知道了怎么计算三角函数,想要学习到更多的学习知识的话,记得关注一下本网站。
推荐阅读:
04-08
不知道大家还能记得三角函数公式吗,相信很多家长都已经记不住所以的公式了吧,我们孩子在学校三角函数的时候,都是分开学习的,如果在平常的时候我们可以把这些三角函数公式大全做一个表格,做一个总结,那么我们的孩子就可以随时的阅读这些公式了,今天留学群就给大家分享一下三角函数公式大全表格内容。
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )
二、推导公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
三、两角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
sin是 对边比斜边 ,cos是邻边比斜边,tan是对边比邻边 cot邻边比对边。
sin30是二分之一,45是二分之根二,60是二分之根三。cos304560分别是二分之根三,二分之根二,二分之一。
tan304560分别是三分之根三,一,根三。
cot304560分别是根三,一,三分之根三。
以上就是留学群给大家介绍的三角函数公式大全表格内容分享,大家可以了解一下,有了这些公式,我们就可以随时的看这些公式了,如果有不会的,就可以再背一遍,就不用再到书本上去找了,就会比较方便。
推荐阅读:
三角函数是高中函数中很常见的一种,那么关于三角函数的知识点大家都了解吗?下面是由留学群编辑为大家整理的“三角函数常见的求导公式有哪些”,仅供参考,欢迎大家阅读本文。
1.锐角三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
2.倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
3.三倍角公式
sin3α=4sinα•sin(π/3+α)sin(π/3-α)
cos3α=4cosα•cos(π/3+α)cos(π/3-α)
tan3a=tana•tan(π/3+a)•tan(π/3-a)
4.三倍角公式推导
sin3a=sin(2a+a)
=sin2acosa+cos2asina
5.辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
6.四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)]
cos4a=1+(-8*cosa^2+8*cosa^4)
tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
7.降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
常见公式集锦反三角函数:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]
y=arccos(x),定义域[-1,1],值域[0,π]
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)
sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】
反三角函数公式:
arcsin(...
12-04
三角函数是数学中一个重要的知识点,在考试中出现的频率也很高。下面是由留学群编辑为大家整理的“三角函数公式大全2022实用”,仅供参考,欢迎大家阅读本文。
三角函数公式大全
倍角公式
二倍角公式
正弦形式:sin2α=2sinαcosα
正切形式:tan2α=2tanα/(1-tan^2(α))
余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
半角公式
正弦
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
余弦
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
正切
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
积化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=[cos(a-b)-cos(a+b)]/2
和差化积
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
诱导公式
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
11-25
三角函数诱导公式是三角函数中一个常用的公式,在考试中也时常出现相关考点。下面是由留学群编辑为大家整理的“三角函数公式诱导公式的推导过程详解”,仅供参考,欢迎大家阅读本文。
1、任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
4、设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
万能公式推导
sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],<...
11-25
三角函数的降幂公式可以将指数幂降为一,那么这个公式是怎样的呢?下面是由留学群编辑为大家整理的“三角函数降幂公式是什么 该怎么推导”,仅供参考,欢迎大家阅读本文。
三角函数的降幂公式
sin²α=(1-cos2α)/2
cos²α=(1+cos2α)/2
tan²α=(1-cos2α)/(1+cos2α)
三角函数降幂公式推导过程
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
∴cos²α=(1+cos2α)/2
sin²α=(1-cos2α)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。
拓展阅读:三角函数的半角公式
三角函数的半角公式:
sin(α/2)=√((1-cosα)/2)
sin(α/2)=-√((1-cosα)/2)
cos(α/2)=√((1+cosα)/2)
cos(α/2)=-√((1+cosα)/2)
tαn(α/2)=√((1-cosα)/((1+cosα))
tαn(α/2)=-√((1-cosα)/((1+cosα))
推荐阅读:
11-05
反三角函数定义域是反三角函数一个重要的知识点。下面是由留学群编辑为大家整理的“反三角函数的定义域,求反三角函数的方法”,仅供参考,欢迎大家阅读本文。
反三角函数的定义域
1、反正弦函数
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。
3、反正切函数
正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
4、反余切函数
余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
5、反正割函数
正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
6、反余割函数
余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。、
求反三角函数的方法:
①先求原函数的值域和定义域
②用y来表达x的式子。
③交换x和y的位置。
例如:求y=e^x(x∈R,y>0)的反函数。
解:定义域为一切实数 ,值域大于0,。
用y来表达有x的式子。
x=ln y 交换x和y的位置 得到: y=ln x。
所以 y=e^x(x∈R,y>0的反函数为y=ln x(x >0,y∈R)。
...
许多同学想了解三角函数,那么三角函数有哪些知识点呢?快来了解一下吧。下面是由留学群小编为大家整理的“三角函数知识点归纳总结”,仅供参考,欢迎大家阅读。
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);
2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数。
y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、见“高次”...
三角函数诱导公式是高中数学里的重点知识之一,那么三角函数诱导公式有哪些呢?下面是由留学群小编为大家整理的“三角函数诱导公式有哪些”,仅供参考,欢迎大家阅读。
三角函数诱导公式一
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z),
cos(2kπ+α)=cosα (k∈Z),
tan(2kπ+α)=tanα (k∈Z),
cot(2kπ+α)=cotα(k∈Z)。
三角函数诱导公式二
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα,
cos(π+α)=-cosα,
tan(π+α)= tanα,
cot(π+α)=cotα。
三角函数诱导公式三
公式三: 任意角α与-α的三角函数值之间的关系(利用 原函数 奇偶性):
sin(-α)=-sinα,
cos(-α)= cosα,
tan(-α)=-tanα,
cot(-α)=-cotα。
三角函数诱导公式四
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα,
cos(π-α)=-cosα,
tan(π-α)=-tanα,
cot(π-α)=-cotα,
三角函数诱导公式五
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα,
cos(2π-α)= cosα,
tan(2π-α)=-tanα,
cot(2π-α)=-cotα。
三角函数诱导公式六
公式六: π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα,
sin(π/2-α)=cosα,
cos(π/2+α)=-sinα,
cos(π/2-α)=sinα,
tan(π/2+α)=-cotα,
tan(π/2-α)=cotα,
cot(π/2+α)=-tanα,
cot(π/2-α)=tanα。
三角函数诱导公式七
推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα。
三角函数推荐访问