留学群专题频道力的合成与分解知识点栏目,提供与力的合成与分解知识点相关的所有资讯,希望我们所做的能让您感到满意!
11-28
为了让大家可以更好的学习和总结物理力学相关的知识点,下面由留学群小编为你准备了“力的合成与分解知识点总结”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!
标量和矢量:
(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。
(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。
力的合成与分解:
(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。
(2)共点力的合成:
1、共点力
几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
2、力的合成方法
求几个已知力的合力叫做力的合成。
①若和在同一条直线上。
a.、同向:合力方向与、的方向一致。
b.、反向:合力,方向与、这两个力中较大的那个力向。
②、互成θ角——用力的平行四边形定则。
平行四边形定则:
两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。
求F、的合力公式:(为F1、F2的夹角)
注意:(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: F1-F2 F F1 +F2。
(3) 合力可以大于分力、也可以小于分力、也可以等于分力。
(4)两个分力成直角时,用勾股定理或三角函数。
注意事项:
(1)力的合成与分解,体现了用等效的方法研究物理问题。
(2)合成与分解是为了研究问题的方便而引入的一种方法,用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力,而不能同时考虑合力。
(3)共点的两个力合力的大小范围是|F1-F2|≤F合≤Fl+F2。
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
(5)力的分解时要认准力作用在物体上产生的实际效果,按实际效果来分解。
(6)力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力).
易错现象:
1.对含静摩擦力的合成问题没有掌握其可变特性;
09-22
只有不断的学习,才能进步,下面由留学群小编为你精心准备了“力的合成与分解知识点”,持续关注本站将可以持续获取更多的考试资讯!
力的合成与分解知识点
当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力。
力的合成
求几个力的合力叫做力的合成。
矢量运算的法则
力是矢量,求两个力的合力时,不能简单地把两个力的大小相加,而应按照平行四边形定则或三角形定则来确定其矢量和。
平行四边形定则
两个力合成时,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边间的对角线代表合力的大小和方向,这个法则叫做平行四边形定则。
三角形定则
即将需要合成的两个力首尾相接,从一个力的始端向另一个力的末端引有向线段,该有向线段的大小和方向就表示合力的大小和方向。
共点力
如果一个物体受到两个或更多力的作用,有些情况下这些力共同作用在同一个点上,或者虽不作用在同一个点上,但它们的延长线交于一点,这样的一组力叫做共点力。
合力与分力的关系
两者是等效替代关系。
力的分解
求一个力的分力叫做力的分解,力的分解同样遵循平行四边形定则,是力的合成的逆运算。
矢量和标量
既有大小,又有方向,相加时遵循平行四边形定则或三角形定则的物理量叫做矢量.只有大小,没有方向,求和时遵循算术法则的物理量,叫做标量。
力的正交分解法
将一个力分解为相互垂直的两手分力的分解方法叫做力的正交分解法。
...力的合成与分解知识点推荐访问