留学群专题频道反比例函数栏目,提供与反比例函数相关的所有资讯,希望我们所做的能让您感到满意! 如果两个变量的每一组对应值的乘积是一个不等于0的常数,那么就说这两个变量成反比例。形如y=k/x(k为常数,k≠0,x≠0)的函数就叫做反比例函数。变形公式为xy=k或y=kx^-1或y=k1/x。x是自变量,y是因变量,y是x的函数。反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴y=±x(即第一三,二四象限角平分线),对称中心是坐标原点。从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
反比例函数是许多同学的难点,那么反比例函数知识点有哪些呢?快来一起了解一下吧。下面是由留学群小编为大家整理的“反比例函数知识点总结归纳”,仅供参考,欢迎大家阅读。
反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的'取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。 解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数
y=k/x=k·1/x xy=k y=k·x^(-1) y=kx(k为常数(k≠0),x不等于0)
反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数中k的几何意义是什么?有哪些应用
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
学习效率之关于难题
很多学生喜欢攻克难题的那种乐趣,于是他们拿出那种不到黄河心不死的精神,有时候耗费一节课时间,攻克一道难题,并且很有成就感。
记住:永远不要花一节课时间去攻克一道难题,这是造成学习效率低下的重大原因。你用一节课攻克一道题,其他题目怎么办,你时间够用吗,更重要的是,你对这道题目,真的收获很大吗。
看完答案,或者听完讲解之后,你必须要花更多的时间来归纳总结:我为何没有解答出这道题,突破口在哪里,我为什么没找到,是哪些关键词汇触发了解题思路,我该如何建立条件反射,以便以后再次看到这些词汇信息,迅速找到相关突破口。记住,这才是最重要的工作。
归纳总结很重要
数学的归纳总结太重要了。顶尖优秀的学生,他们做一道题花5分钟,然后会拿出10~15分钟来做归纳总结,来写解题笔记。
归纳总结,其实就是解题联想,就是书写解题笔记,就是总结“条件反射”。要提高对关键词汇的敏感度,能够通过关键词汇,迅速建立起条件反射...
留学群为您整理“中考数学反比例函数考点汇总”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学反比例函数考点汇总 | |
1 | 中考数学知识梳理:反比例函数的性质 |
2 | 中考数学考点精讲:反比例函数的一般形式 |
3 | 中考数学知识讲解:反比例函数的解析式 |
4 |
留学群为您整理“中考数学知识讲解:反比例函数的解析式”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学知识讲解:反比例函数的解析式
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。
因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。
用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
推荐阅读:
...
留学群为您整理“中考数学考点精讲:反比例函数的一般形式”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学考点精讲:反比例函数的一般形式
1.反比例函数的一般形式
一般地,如果两个变量x、y之间的关系可以表示成
(k为常数,k≠0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成: (k是常数,k≠0).
2.要求出反比例函数的解析式,利用待定系数法求出k即可.
反比例函数解析式的特征
⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数
⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
推荐阅读:
...
留学群为您整理“中考数学知识梳理:反比例函数的性质”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学知识梳理:反比例函数的性质
性质:函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量。
1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是: x≠0; y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴。
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
推荐阅读:
...
留学群为您整理“中考数学考点精讲:反比例函数的定义与k的几何意义”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学考点精讲:反比例函数的定义与k的几何意义
反比例函数的定义:
定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数。
其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数中k的几何意义:
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。
推荐阅读:
...
留学群为您整理“中考数学知识讲解:反比例函数的表达式和应用”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学知识讲解:反比例函数的表达式和应用
反比例函数的表达式:
X是自变量,Y是X的函数。
y=k/x=k1/x;
xy=k;
y=kx^(-1)(即:y等于x的负一次方,此处X必须为一次方);
y=kx(k为常数且k0,x0)若y=k/nx此时比例系数为:k/n。
反比例函数的应用:
建立函数模型,解决实际问题。
推荐阅读:
留学群中考网为大家提供2018中考数学知识点:反比例函数,更多中考数学复习资料请关注我们网站的更新!
2018中考数学知识点:反比例函数
反比例函数的定义
定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质
函数y=k/x称为反比例函数,其中k≠0,其中X是自变量,
1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是:x≠0;
y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴
5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数的一般形式
一般地,如果两个变量x、y之间的关系可以表示成
中考数学考试知识点分析:反比列函数
(k为常数,k≠0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成:(k是常数,k≠0).
2.要求出反比例函数的解析式,利用待定系数法求出k即可.
反比例函数解析式的特征
⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数
⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
小编精心为您推荐:
05-31
留学群教师资格考试栏目为大家分享“教师资格面试数学说课稿:反比例函数”,希望对考生能有帮助。想了解更多关于教师资格考试的讯息,请继续关注我们网站的更新。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、学情分析来确定本节课的教学重难点,并着重阐述我的教学过程。
一、说教材
《反比例函数》是苏教版八年级第九章第一节“反比例函数”的内容。本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。
二、说学情
对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
三、说教学目标
根据以上对教材的分析和学情的把握,我确定了如下三维教学目标:
(一)知识与技能
结合具体情境体会反比例函数的意义,理解反比例函数的概念
(二)过程与方法
通过观察、比较、分析、归纳等数学活动,发现反比例函数的特征,并能根据实际问题中的条件确定反比例函数的表达式。
(三)情感态度与价值观
在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
四、说教学重难点
(一)教学重点
讨论两个变量之间的相互关系,加深对函数概念的理解。
(二)教学难点
能准确写出反比例函数表达式。
五、说教法和学法
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
六、说教学过程
(一)导入新课
首先是导入环节,在这一环节中我将采用问题情境导入法:小明假期的时候跟着家里一起出去旅游,在路上的时候,妈妈问了小明这样一个问题,说:我们到达上海的时间和汽车行驶的速度存在一个什么样的关系?
从而引出接下来的例题与新课
设计意图:通过一道具体情境问题激发学生的好奇心,引起学生学习的兴趣,为新知学习做铺垫。
(二)新课讲授
接下来我会出示例题,南京与上海相距约300km,一辆汽车从南京出发,以速度v(km/h)开往上海,全程所用时间为t(h).
留学群中考网为大家提供2016中考数学知识点:反比例函数图像与性质,更多中考数学复习资料请关注我们网站的更新!
2016中考数学知识点:反比例函数图像与性质
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
数字巧记:`sqrt2=1.414`(意思意思而已)`sqrt3=1.7321`(三人一起商量)`sqrt5=2.236`(吾量量山路)`sqrt6=2.449`(粮食是酒)`sqrt7=2.645`(二流是我)`sqrt8=2.828`(二爸二爸)`sqrt10=3.16`(山药,六两)
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
小编精心为您推荐:
反比例函数推荐访问