留学群圆柱课件

留学群专题频道圆柱课件栏目,提供与圆柱课件相关的所有资讯,希望我们所做的能让您感到满意!

圆柱与圆锥课件

 

  希望这份“圆柱与圆锥课件”能够满足您的期望。每个老师在上课前会带上自己教案课件,因此老师会仔细规划每份教案课件重点难点。要知道教案课件也是老师上课实施过程程的依据。下面的观点仅供参考不能代表全部意见!

圆柱与圆锥课件 篇1

  一、填空题

  1.用一张长31.4厘米,宽20厘米的长方形的纸围成一个圆柱体,这张纸的长就是圆柱体的(),宽是圆柱体的()。圆柱体的侧面积是()。

  2、圆柱体的底面半径2厘米、高10厘米,它的侧面积是()平方厘米。

  3、一个圆柱体的底面半径是1分米、高3分米,它的表面积是()平方分米。

  4.一个圆柱体的侧面积是240平方厘米,高是5厘米,那么圆柱体的底面周长是()。

  5、底面积和高都相等的圆柱和圆锥,圆柱的体积是15立方分米,圆锥的体积是()。

  6、一个圆柱体的底面积是6.28平方厘米的圆柱切成两个同样大小的圆柱,表面积增加()

  7、一个圆锥体,底面积是24平方分米,高是30厘米,那么圆锥的体积是()立方分米。

  8、一个圆柱体的侧面积是12.56平方厘米,高是8厘米,底面周长是()厘米,底面半径是()厘米,底面积是()平方厘米,表面积是()平方厘米。

  9、用一张边长5厘米的正方形纸围成一个圆柱,这个圆柱的高是()立方厘米。

  10、一根电线杆底面周长50.24厘米,高10米,这根电线杆占地()平方厘米。

  11.一个圆柱和一个圆锥等底、等高,若圆锥的体积比圆柱少30立方分米,则圆锥的体积是()立方分米,圆柱体积是()。

  12、若圆锥的体积一定,圆锥的底面积和高成()比例。

  13、一个圆柱的底面积是1.2平方分米,体积是60立方厘米,高是()厘米。

  14、圆锥的体积等于和它等底、等高的圆柱体体积的,若圆锥体积是9.6立方分米,那么圆柱体积是()立方分米。

  15、一个圆柱体与一个圆锥体的底面积和高都相等。已知圆柱的体积是6立方米,那么圆锥的体积是();如果圆锥的体积是6立方米,那么圆柱的体积是()。

  16、一个圆柱和一个圆锥等底、等高,圆锥的体积比圆柱的体积少36立方厘米,圆柱的高是()。

  17、一个圆锥体的底面半径扩大2倍,高缩小为原来的一半,它的体积是原来体积的()。

  18、一个圆柱体,体积是立方米,和它等底、等高的圆锥体的体积是()。

  19、一个圆锥体高1.5米,底面周长是12.56米,体积是()。

  20、一个圆柱体的体积增加2立方米,那么与它等底、等高的圆锥体的体积是()。

  二、判断题

  1.圆柱两个底面之间的距离是圆柱的高,并且有无数条。()

  2、如果一个正方体和一个圆柱体底面周长相等,高也相等,则它们的体积也相等。()

  3、圆柱的底面半径扩大2倍,高缩小2倍,它的体积不变。()

  4、一个圆柱体直径扩大3倍,体积也扩大3倍。()

  5、圆柱体的体积和它的容积一样大。()

  6、圆柱的高是3厘米,与它等底、等高的圆锥体高是9厘米。()

  7、圆锥体比与它等底、...

圆柱体积课件范本

 

  根据您的需求栏目小编为您搜集到了“圆柱体积课件”的详细介绍。老师提前规划好每节课教学课件是少不了的,每个老师都需要将教案课件设计得更加完善。教案是完整课堂教学的核心。如果这篇内容能够对你有所启示请收藏起来!

圆柱体积课件 篇1

   教学内容:

  北师大版小学数学教材六年级下册第8—10页。

   教学目标:

  1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,能够运用公式正确的计算圆柱的体积和容积。

  2、初步学会用转化的思想和方法,提高解决实际问题的能力。

   教学重点、难点:

  重点:掌握圆柱体积的计算公式。

  难点:圆柱体积计算公式的推导。

   教学过程:

   一、情境导入

  1、出示教学情境:怎样用学过的知识测量出老师的水杯里装了多少毫升的水?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出长方体的长、宽和水的高,就能求出水的体积。

  2、出示第二情境:圆柱形的木柱子、压路机的车轮这样的圆柱用这种方法还行吗?怎么办?

  怎样计算圆柱的体积?这就是我们本节课要研究的问题。(板书课题:计算圆柱的体积)

   二、探究新知:

  1、大胆猜想:你觉得圆柱体积的大小和什么有关?

  学生猜想,教师出示相应的课件演示,让学生观察,体会圆柱的体积和它的底面积和高,有关系,有怎样的'关系。

  2、圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。)

  学生讨论交流:

  (1)把圆柱拼成长方体后,什么变了,什么没变?

  (2)拼成的长方体与圆柱之间有什么联系?

  (3)通过观察得到什么结论?

  得到:圆柱的体积=底面积×高 V=Sh

   三、拓展交流

  要求圆柱的体积只要找到它的底面积和高就可以,分别讨论知道半径、直径、地面周长,该怎么求出圆柱的体积,总结出公式。

   四、练习设计:

  1、想一想,填一填:

  把圆柱体切割拼成近似(),它们的()相等。长方体的高就是圆柱体的( ),长方体的底面积就是圆柱体的( ),因为长方体的体积=(),所以圆柱体的体积=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圆柱体体积用字母表示为( )

  2、判断正误,对的画“√”,错误的画“×”。

  (1)圆柱体的底面积越大,它的体积越大。×

  (2)圆柱体的高越长...

圆柱和圆锥课件8篇

 

圆柱和圆锥课件 篇1

  本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。

  全单元编排五道例题、四个练习,把内容分成四段教学。依次是圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积。在单元结束时,还安排了整理与练习以及实践活动《测量物体的体积》。

  1.通过观察、操作,认识圆柱和圆锥。

  学生在第一学段已经直观认识了圆柱,通过滚一滚、堆一堆、摸一摸等活动初步感受了圆柱的形状与长方体、正方体有不同之处。例1先教学认识圆柱,再教学认识圆锥,要让学生从整体上体会它们的特征,了解围成圆柱或圆锥的各个面,认识圆柱和圆锥的高,并会测量高。

  教学圆柱从识别圆柱形的物体开始,因为学生已有这样的能力。例1的图片里,有些物体是圆柱形的,有些物体的一部分是圆柱形的,也有些物体不是圆柱形的。而且,在圆柱形的物体中,有的高,有的矮,有的厚,有的薄,这就为认识圆柱提供了丰富的具体对象。

  认识圆柱的教学要引导学生进行观察、交流,同时教师要给予必要的讲解。让学生仔细观察圆柱,发现圆柱的上、下两个面是相同的圆形,圆柱的侧面是曲面,而且圆柱上下是一样粗的。前两点学生容易注意到,第三点往往会疏忽,在交流的时候,要引起学生的注意。在“练一练”里,教材安排了上、下两个底面大小不同的杯子和木桶,两个底面虽然相同但两底之间粗细不同的腰鼓,还有底面是正六边形的盒子,让学生指出这些物体都不是圆柱形,从而加强对圆柱特征的体验。在学生交流圆柱特征的过程中,教师可相机指出圆柱上、下两个面叫做底面,围成圆柱的曲面叫做侧面,及时出现圆柱的几何图形,在图形上标出圆柱的底面和侧面,这是建立圆柱概念的重要一步。同时指出圆柱两个底面之间的距离叫做高,并在圆柱的几何图形上标出高,既直观地表达高的意义,又能使学生想到测量圆柱高的方法。

  例题引导学生把认识圆柱的学习方法迁移到认识圆锥上来,在观察圆锥形物体的基础上抽象出圆锥的几何图形,在交流圆锥特征的过程中认识圆锥的顶点、底面和侧面。圆锥的高是教学的一个难点,因为圆锥的高是圆锥内部的一条线段的长。教材指出从圆锥的顶点到底面圆心的距离是圆锥的高,并在圆锥的几何图形上用虚线画出顶点到底面圆心的线段,帮助学生理解圆锥高的含义。

  练习五的设计重视空间观念的培养,都是动手操作的习题。第2题从正面、上面、侧面观察圆柱和圆锥,通过立体图形与平面图形、曲面与平面的相应转化,加强对圆柱、圆锥特征的体验,发展空间观念。第3题把长方形绕它的一条边旋转形成圆柱,把直角三角形绕它的一条直角边旋转形成圆锥,把半圆绕它的直径旋转形成球,让学生在动态中感受这些几何体,使已有的圆柱、圆锥概念得到深化。第5题利用教材附页里的图形做圆柱和圆锥,体会圆柱的侧面是长方形卷成的,圆锥的侧面是扇形卷成的,再次经历平面图形变成立体的过程。同时,做成一个圆柱要两个相同的圆,做成一个圆锥只要一个圆,再次体会圆柱与圆锥的特征。测量做成的圆柱、圆锥的底面直径和高,能巩固高的概念,培养测量能力。计算圆柱、圆锥的底面周长和底面积,复习了圆的知识,为继续教学圆柱的表面积,圆柱和圆锥的体积做好准备。

  2.在现实的情境中,探索圆柱表...

圆柱的认识课件集锦8篇

 

  笔者为大家挑选了一篇标题为“圆柱的认识课件”的文章,期望大家能够喜爱,深信你能从本文中找到所需的内容。新晋入职的教师必须备妥上课所需的教案课件,每日教师均须打造自己的教案课件。对于新老师而言,策划精良的教案课件则是提高授课效率的重要一环。

圆柱的认识课件 篇1

  第一课时 圆柱和圆锥的认识

  教科书18-19页,练一练、练习五1-4题。

  1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

  2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

  1、在充分感知的基础上,探索圆柱和圆锥的特征。

  2、进一步体验立体图形与生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

  1、圆柱和圆锥形的实物、模型

  2、长方形、直角三角形和半圆形的小旗各一面。

  1、预习课本第18页例1,认识圆柱和圆锥的特点。

  2、知道什么什么样的形体是圆柱和圆锥。

  3、在课本上完成第19页的练一练、练习五的1-4题。

  1、你预习的两个立体图形,分别叫什么?

  2、剪下第125、127页的图形,用硬纸板做一个圆柱和一个圆锥。

  3、反馈练习五的完成情况。

  1、研究圆柱

  ⑴生活中还有哪些物体的形状是圆柱形的?

  出示相关圆柱形实物和模型

  ⑵引导观察:仔细观察这些圆柱,你能发现什么?

  在小组中交流自己的发现。

  ⑶组织全班交流,教师适当板书:

  上下一样粗细有两个圆面一个曲面

  ⑷认识圆柱各部分的名称:

  教师先对照圆柱的直观模型介绍圆柱的底面、侧面和高,再让学生在实物模型上找到圆柱的底面、侧面和高。

  2、研究圆锥

  ⑴生活中还见过哪些圆锥形状的物体?

  ⑵仔细观察圆锥,你能发现什么?在小组中说一说。

  ⑶全班交流,教师相机板书:

  有一个顶点底面是圆形侧面是一个曲面

  ⑷认识圆锥的高

  出示圆锥的透视图,让学生认识圆锥的高。

  ⑸在圆锥的实物模型中,相互说说圆锥的顶点、底面、侧面和高。

  3、讨论“练一练”。

  ⑴让学生各自从教材提供的图片中找出圆柱形的和圆锥形的。

  ⑵交流说一说挑选的理由和不挑选的理由。

  1、做练习五第2题。

  ⑴引导学生从正面、上面、侧面观察圆柱和圆锥,看分别看到的是什么形状?

  ⑵在书中连线。

  2、做练习五第3题。

  ⑴出示长方形、直角三角形和半圆形的小旗,引导学生猜想:如果将旗杆快速旋转,想想一下:小旗旋转一周各能成什么形状?

  ⑵让学生旋转小旗,看猜想是否正确。

  ⑶如果让你自己设计一个小旗,你想将小旗设计成什么样子的?想象一下,如果也这样旋转一周,会转成什么形状?自己做一做。

  3、做练习五第4题。

圆柱的认识课件 篇2

圆柱的课件(精品7篇)

04-30

标签: 圆柱课件

 

  我们用心编写这篇圆柱的课件堪称是激励人心的文章之一。通常老师在上课之前会带上教案课件,每天老师要有责任写好每份教案课件。教案是教学过程中发现和解决问题的重要工具。如果对这个话题感兴趣的话,请关注本站!

圆柱的课件 篇1

  教学目标:

  1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学准点:

  掌握圆柱体积公式的推导过程。

  教学设想:

  1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

  2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。

  3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

  4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。 5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。 6.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

  7.由于每个学生的知识经验、生活情景、思维方式的不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。

  教学过程:

  一、问题导入,质疑问难

  师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(...