留学群专题频道圆的知识点栏目,提供与圆的知识点相关的所有资讯,希望我们所做的能让您感到满意!
11-23
很多同学在复习初中数学圆的知识点时,因为之前没有做过系统的总结,导致复习效率很低。下面是由留学群编辑为大家整理的“初中数学圆的知识点归纳总结2022”,仅供参考,欢迎大家阅读本文。
初中数学圆的知识点归纳梳理
1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2:圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合。
6.圆的外部可以看作是圆心的距离大于半径的点的集合。
7.同圆或等圆的半径相等。
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
12.①直线L和⊙O相交d ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
14.切线的性质定理圆的切线垂直于经过切点的半径。
15.推论1经过圆心且垂直于切线的直线必经过切点。
16.推论2经过切点且垂直于切线的直线必经过圆心。
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的.夹角。
18.圆的外切四边形的两组对边的和相等外角等于内对角。
19.如果两个圆相切,那么切点一定在连心线上。
20.①两圆外离d>R+r ②两圆外切d=R+r ③.两圆相交R-rr) ④.两圆内切d=R-r(R>r) ⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦。
22.定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
24.正n边形的每个内角都等于(n-2)×180°/n。
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长。
27.正三角形面积√3a/4 a表示边长。
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。 29.弧长计算公式:L=n兀R/180。...
11-20
在复习初中数学圆的部分时,很多同学因为没有做系统的总结,导致复习效率低下。下面是由留学群编辑为大家整理的“初中数学圆的知识点归纳总结”,仅供参考,欢迎大家阅读本文。
初中数学圆的知识点归纳总结
1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2:圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合。
6.圆的外部可以看作是圆心的距离大于半径的点的集合。
7.同圆或等圆的半径相等。
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
12.①直线L和⊙O相交d ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
14.切线的性质定理圆的切线垂直于经过切点的半径。
15.推论1经过圆心且垂直于切线的直线必经过切点。
16.推论2经过切点且垂直于切线的直线必经过圆心。
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的.夹角。
18.圆的外切四边形的两组对边的和相等外角等于内对角。
19.如果两个圆相切,那么切点一定在连心线上。
20.①两圆外离d>R+r ②两圆外切d=R+r ③.两圆相交R-rr) ④.两圆内切d=R-r(R>r) ⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦。
22.定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
24.正n边形的每个内角都等于(n-2)×180°/n。
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长。
27.正三角形面积√3a/4 a表示边长。
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
29.弧长计算公式:L=n兀R/180。<...
11-17
在初中数学中,几何图形圆是考点中很重要的一部分。下面是由留学群编辑为大家整理的“初中数学圆的知识点归纳总结2022”,仅供参考,欢迎大家阅读本文。
初中数学圆的知识点归纳总结2022
1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。
2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。
6.不在同一直线上的三点确定一个圆。
7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
10.经过切点且垂直于切线的直线必经过圆心。
11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
12.切线的性质定理圆的切线垂直于经过切点的半径。
13.经过圆心且垂直于切线的直线必经过切点
14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
15.圆的外切四边形的两组对边的和相等外角等于内对角。
16.如果两个圆相切,那么切点一定在连心线上。
17.①两圆外离d>R+r ②两圆外切d=R+r ③.两圆相交d>R-r) ④.两圆内切d=R-r(R>r) ⑤两圆内含d=r)
18.定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。
21.内公切线长= d-(R-r)外公切线长= d-(R+r)。
22.定理一条弧所对的圆周角等于它所对的圆心角的一半。
23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
...08-16
许多同学想要了解初中数学圆的知识,那么圆的知识点总结有哪些呢?快来和小编一起看看吧。下面是由留学群小编为大家整理的“初中数学圆的知识点总结归纳”,仅供参考,欢迎大家阅读。
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 :圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合。
6.圆的外部可以看作是圆心的距离大于半径的点的集合。
7.同圆或等圆的半径相等。
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等。
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角。
12.①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。
14.切线的性质定理 圆的切线垂直于经过切点的半径。
15.推论1 经过圆心且垂直于切线的直线必经过切点。
16.推论2 经过切点且垂直于切线的直线必经过圆心。
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角。
18.圆的外切四边形的两组对边的和相等 外角等于内对角。
19.如果两个圆相切,那么切点一定在连心线上。
20.①两圆外离 d>R+r ②两圆外切 d=R+r ③.两圆相交 R-rr) ④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)
21.定理 相交两圆的连心线垂直平分两圆的公共弦。
22.定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
24.正n边形的每个内角都等于(n-2)×180°/n。
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长。
27.正三角形面积√3a/4 a表示边长。
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
...
初中数学知识是需要总结和归纳的,不然知识就会零零散散。为了帮助同学们更好的学习。下面是由留学群小编为大家整理的“初中数学圆的知识点归纳总结”,仅供参考,欢迎大家阅读。
一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。)
8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
直线与圆没有交点,直线与圆相离。
9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。
则AB=(x1+x2,y1+y2)
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的'外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引...
初中圆的知识点有哪些?想学习的考生可以看看,下面由留学群小编为你精心准备了“初中数学圆的知识点总结”,持续关注本站将可以持续获取更多的考试资讯!
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦...
圆的知识点推荐访问