留学群专题频道平行四边形有几条对称轴栏目,提供与平行四边形有几条对称轴相关的所有资讯,希望我们所做的能让您感到满意!
长方形和平行四边形有几条对称轴呢?同学们清楚吗,如果不清楚快来小编这里瞧瞧。下面是由留学群小编为大家整理的“长方形和平行四边形有几条对称轴”,仅供参考,欢迎大家阅读。
长方形也叫矩形,是一种平面图形,它也定义为四个角都是直角的平行四边形。
长方形的对称轴
长方形是轴对称图形,有两条对称轴。在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。
长方形的性质
长方形的性质有两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;具有不稳定性;长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。
平行四边形有几条对称轴
平行四边形不一定有对称轴。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
平行四边形都是中心对称图形,但不一定是轴对称图形。长方形和正方形都属于平行四边行,叫特殊的平行四边形。
所以,特殊的平行四边形里,长方形有两条对称轴,正方形有四条对称轴,还有菱形(四条边都相等的平行四边形)有两条对称轴。 普通的平行四边形,没有对称轴。
长方形是轴对称图形,有(两)条对称轴。
知识点:
1、轴对称图形:是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。
2、轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合。
3、例如:等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆和正多边形都是轴对称图形。圆有无数条对称轴,都是经过圆心的直线。
椭圆形有几条对称轴
椭圆形有2条对称轴。椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
平行四边形的判定方法
1、两组对边分别平行的四边形是平行四边形(定义判定法)。
2、一组对边平行且相等的四边形是平行四边形。
3、两组对边分别相等的四边形是平行四边形。
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定)。
5、对角线互相平分的四边形是平行四边形。
平行四边形性质
1、夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
2、如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
...
平行四边形的定义、性质与判定,同学们清楚吗?如果不清楚的话,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“平行四边形的定义、性质与判定”,仅供参考,欢迎大家阅读。
定义
两组对边分别平行的四边形叫做平行四边形。
1、平行四边形属于平面图形。
2、平行四边形属于四边形。
3、平行四边形属于中心对称图形。
性质
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等” )
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等” )
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分” )
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形。)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等份。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积
判定
1、两组对边分别平行的四边形是平行四边形(定义判定法);
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
只有一组对边平行的四边形不一定是梯形。
1、梯形的...
一个平行四边形有几条对称轴呢?有同学了解过吗,如果没有快来小编这里瞧瞧。下面是由留学群小编为大家整理的“一个平行四边形有几条对称轴”,仅供参考,欢迎大家阅读。
一个平行四边形有几条对称轴
平行四边形不一定有对称轴。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
平行四边形都是中心对称图形,但不一定是轴对称图形。长方形和正方形都属于平行四边行,叫特殊的平行四边形。
所以,特殊的平行四边形里,长方形有两条对称轴,正方形有四条对称轴,还有菱形(四条边都相等的平行四边形)有两条对称轴。 普通的平行四边形,没有对称轴。
拓展阅读:菱形的面积公式是多少
知道底和高,按照平行四边形的面积公式计算:S=ah;知道两条对角线的长a和b,面积S=ab÷2,在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形,菱形(rhombus)是特殊的平行四边形之一。有一组邻边相等的平行四边形称为菱形。在平行四边形ABCD中,若AB=BC,则称这个平行四边形ABCD是菱形,记作◇ABCD,读作菱形ABCD。
菱形的性质和判定菱形的性质:
1:对边相等且平行;
2:对角线互相垂直且平分;
3:对角相等;
4:对角线平分一组对角;
5:邻角互补;
6:邻边相等。
菱形的判定:1:邻边相等的平行四边形;
2:对角线互相垂直的平行四边形;
3:一条对角线平分一组对角的平行四边形。
...04-26
一般的平行四边形有几条对称轴呢?同学们清楚吗,如果不太清楚,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“一般的平行四边形有几条对称轴”,仅供参考,欢迎大家阅读。
一般的平行四边形有几条对称轴
一般的平行四边形不是轴对称图形,所以没有对称轴.
只有特殊的平行四边形才是轴对称图形,才有对称轴.
如:矩形有两条对称轴;
菱形有两条对称轴;
正方形有四条对称轴.
拓展阅读:平行四边形是不是轴对称图形
严格来讲,长方形和正方形都属于平行四边行,叫特殊的平行四边形。所以,特殊的平行四边形里,长方形有两条对称轴,正方形有四条对称轴,还有菱形(四条边都相等的平行四边形)有两条对称轴。普通的平行四边形,没有对称轴。
平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形,在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形一般用图形名称加四个顶点依次命名。其相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
平行四边形的基本性质:
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形。)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
...04-26
平行四边形有几条对称轴呢?同学们清楚吗,不清楚的话,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“平行四边形有几条对称轴,为什么”,仅供参考,欢迎大家阅读。
平行四边形不一定有对称轴,因为若只是平行四边形,则为0条对称轴;而若是矩形,则2条;若是正方形,则4条;若是菱形,则2条等等。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。平行四边形都是中心对称图形,但不一定是轴对称图形。长方形和正方形都属于平行四边行,叫特殊的平行四边形。所以,特殊的平行四边形里,长方形有两条对称轴,正方形有四条对称轴,还有菱形(四条边都相等的平行四边形)有两条对称轴。普通的平行四边形,没有对称轴。
梯形有几条对称轴
梯形:若是等腰梯形,有一条对称轴,是上下底中点所在的直线,若是一般的梯形,没有对称轴。
扇形:有一条对称轴,是圆心与弧的中点所在的直线。
五边形:若是正五边形,则有5条对称轴,否则没有
六边形:若是正六边形,则有6条对称轴,否则没有
正方形:有4条对称轴
等边三角形是中心对称图形吗
当然不是中心对称图形,因为在等边三角形上找不到一点,使等边三角形绕这一点旋转180度后与这个等边三角形自身重合.但说等边三角形是轴对称图形是正确的
1、圆形有无数条对称轴。
2、圆是轴对称图形(也是中心对称图形),它有无数条对称轴,任意一条经过圆心的直线都是圆的对称轴。
3、一个图形沿着一条线对折后,两边的图形完全重合,这样的图形就是对称图形,这条线就是它的对称轴,圆沿着圆中任意一条直径对折后两边的图形都可以完全重合,所以圆的对称轴只有无数条。
正三角形是什么三角形
正三角形一般指等边三角形
等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
尺规作法
第一种:可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
第二种:在平面内作一条射线AC,以A为固定端点在射线AC上截取线段AB=等边三角形边长,然后保持圆规跨度分别以A,B为端在AB同侧点作弧,两弧交点D即为所求作的三角形的第三个顶点。
性质
(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
三线合一
(2)等边三角形每条边上的中线、高线和角平分线互相重合(三线合一)
(3)等边三角形是轴对称图形,它有三条对...
平行四边形有几条对称轴推荐访问