留学群专题频道平行四边形面积栏目,提供与平行四边形面积相关的所有资讯,希望我们所做的能让您感到满意!
平行四边形的面积该怎么求呢?出社会的同学应该都不记得了。快来小编这里瞧瞧吧。下面是由留学群小编为大家整理的“平行四边形的面积怎么求”,仅供参考,欢迎大家阅读。
平行四边形的面积怎么求
(1)平行四边形的面积公式:底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=a*h
(2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*s
拓展阅读:平行四边形的面积计算公式
平行四边形的面积公式:底×高(可运用割补法,推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。
平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。
平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。
任何通过平行四边形中点的线将该区域平分。
任何非简并仿射变换都采用平行四边形的平行四边形。
平行四边形具有2阶(至180°)的旋转对称性(如果是正方形则为4阶)。如果它也具有两行反射对称性,那么它必须是菱形或长方形(非矩形矩形)。如果它有四行反射对称,它是一个正方形。
平行四边形的周长为2(a + b),其中a和b为相邻边的长度。
...
留学群教师资格考试网为您整理“教师资格证小学数学说课:平行四边形面积的计算”,希望对您有所帮助!
“平行四边形面积的计算”说课
一、教材简析
“平行四边形面积的计算”是九年义务教育苏教版六年制小学数学第八册第四单元第42页——44页的学习内容。教材从一年级第一册起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第七册教材中安排了平行四边形、三角形和梯形的认识,清楚了解其特征及底和高的概念。而本册(第八册)教材中"平行四边形面积的计算"是在学生掌握上述内容的基础上安排的。使整个安排体现了线形的、层递的、系统的体系,这也完全吻合了学生的认知规律和心理特点。
因此,学生要想很好地理解与掌握平行四边形面积公式,就必须以长方形的面积计算和平行四边形的特征为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。从而完成新知的建构过程。同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。
二、教学目标
认知目标:使学生理解并掌握平行四边形面积计算公式(方法),会运用平行四边形的面积公式求平行四边形的面积。
能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
三、教学重点与难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。
教学难点:把平行四边形转化学过的图形,通过找关系推导出平行四边形的面积公式。
四、教学对象分析
建构主义认为,虽然学生要学习的数学都是前人已经建造好了的,但对学生来说,仍是全新的、未知的。需要每个人再现类似的创造的过程来形成。即学生用自己的活动对人类已有的数学知识建构起自己的正确理解,而不是去仔细地吸收课本上的或教师叙述的现成结论。应该是一个学生亲身参与的充满丰富、生动的概念或思想活动的组织过程。
随着信息社会的飞速发展,小学中年级的学生已经掌握了必要的信息技术。“几何画板”的简单运用与操作已经成为了小学生形体知识的认知和探究工具。
在课堂上,学生很容易产生一些“奇异妙想”,“几何画板”凭着强大的交互性给学生以参与的机会,让学生自己操作,实现自我学习,想象力得到充分发挥,是学生成为一个真正的研究者。
“几何画板”凭借着信息平台的优势,提供了学生反复学习的机会,在学习中,反复使用它,使学生注意力更为集中,极大地激发了学生学习兴趣,调动学生学习的积极性。
学生在平行四边形的面积公式推导过程中,依据原有知识体系,以“几何画板”为探索工具,通过采用剪—移—拼的方法,对平行四边形进行转化,学生将很容易自主发现规律,及平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。
五、基本理念
整堂课在建构主义的理论指导下,充分贯彻新课程标准,从数学自身特点出发,遵循学生学习数学的心理规律,让学生从已有的经验出发,通过各种方式,自主探索,自我研究,...
平行四边形面积推荐访问