留学群数列前n项和的公式

留学群专题频道数列前n项和的公式栏目,提供与数列前n项和的公式相关的所有资讯,希望我们所做的能让您感到满意!

等比数列前n项和的公式

 

  等比数列前n项和怎么算呢?公式又有哪些呢?同学们快来和小编一起看看吧。下面是由留学群小编为大家整理的“等比数列前n项和的公式”,仅供参考,欢迎大家阅读。

  等比数列前n项和的公式

  设数列{a×q^(n-1)}是首项为a,公比为q的等比数列。

  即a, aq, aq², aq³, ^(n-1). (n=1,2,3,4...)

  其前n项和为Sn,

  当q=1时,Sn=na. (n=1,2,3,....)

  当q≠1时,Sn=a[(q^n)-1]/(q-1) (n=1,2,3,...)。

  等比数列前n项和公式推导

  等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。

  推导如下:

  因为an=a1q^(n-1)

  所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1)

  qSn=a1*q^1+a1q^2+...+a1*q^n(2)

  (1)-(2)注意(1)式的第一项不变。

  把(1)式的第二项减去(2)式的第一项。

  把(1)式的第三项减去(2)式的第二项。

  以此类推,把(1)式的第n项减去(2)式的第n-1项。

  (2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。

  于是得到

  (1-q)Sn=a1(1-q^n)

  即Sn=a1(1-q^n)/(1-q)。

  拓展阅读:等比数列前N项和的性质

  1、若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;

  2、在等比数列中,依次每k项之和仍成等比数列。“G是a、b的等比中项”“G^2=ab(G≠0)”;

  3、若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2;

  4、按原来顺序抽取间隔相等的项,仍然是等比数列;

  5、等比数列中,连续的,等长的,间隔相等的片段和为等比;

  6、若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数;

  7、等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)(8)数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方;

  8、由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

  等比数列的有关概念

  1、等比数列的定义:

  一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于一个常数(不为0),那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用q来表示。<...