留学群专题频道数学知识点归纳总结栏目,提供与数学知识点归纳总结相关的所有资讯,希望我们所做的能让您感到满意!
02-25
很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。下面是由留学群编辑为大家整理的“初中数学知识点归纳总结2022”,仅供参考,欢迎大家阅读本文。
初中数学知识点归纳总结2022
1、代数式的定义:用运算符号把数或字母连接而成的式子叫做代数式。
2、代数式的分类:代数式分为有理式和无理式,有理式又可以分为整式和分式,而整式又可以分为单项式和多项式。
3、列代数式的定义:把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来,就是列代数式。
4、代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
5、单项式:只含有数字与字母乘积的代数式叫单项式(单独的一个数或字母也是单项式)。其中,数字因式叫做单项式的系数,单项式中所有的字母的指数的和叫做这个单项式的次数。
6、多项式:几个单项式的和叫做多项式。多项式中的每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。
7、多项式的次数:多项式中系数最高项的次数叫做多项式的次数。
8、降(升)幂排列:把一个多项式按某一字母的指数从大(小)到小(大)的顺序排列起来。
9、整式的定义:单项式和多项式的统称。
10、同类项的定义:所含字母相同,并且相同字母的次数也相同的项叫做同类项。
11、合并同类项:把多项式中同类项合成一项的过程叫做合并同类项。
12、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
13、整式的乘除法计算法则:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m,n是正整数)②同底数幂的除法法则:同底数幂相除,底数不变,指数相减即( ≠0, ,是正整数, > )③幂的乘方法则:幂的乘方,底数不变,指数相乘,即 (m,n是正整数)④积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(是正整数)。
14、因式分解的定义:把一个多项式化成几个整式的积的形式,叫做多项式的因式分解。
15、因式分解的注意事项:因式分解要分解到不能再分解为止;因式分解与整式乘法互为逆运算。
16、公因式的定义:一个多项式的各项都含有的相同的因式叫做这个多项式各项的公因式。
17、分解因式的方法:①提取公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种因式分解叫做提取公因式法。即: ②运用公式法:反用乘法公式,可以把某些多项式分解因式,这种方法叫做运用公式法(常用的有:和)③分组分解法:利用分组来分解因式的方法叫做分组分解法④十字相乘法:将 型的二次三项式分解为。
18、方程的定义:含有未知数的等式叫做方程。
19、方程的解:使方程两边相等的未知数的值叫做方程的解,只有一个未知数的方程的解也叫做方程的根。
20、一元一次方程:含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,它的标准形式是ax+b=0,其中x是未知数,它有唯一解。(a≠0)
21、一元二次方程:只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程...
02-25
小学学习数学这个科目需要做好知识归纳并记忆,能大大提高自己的学习效率。下面是由留学群编辑为大家整理的“小学数学知识点归纳总结大全2022”,仅供参考,欢迎大家阅读本文。
小学数学知识点归纳总结大全2022
1、一个因数是两位数的乘法法则
(1)、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
(2)、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
(3)、然后把两次乘得的数加起来。
2、除数是两位数的除法法则
(1)、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
(2)、除到被除数的哪一位就在哪一位上面写商;
(3)、每求出一位商,余下的数必须比除数小。
3、万级数的读法法则
(1)、先读万级,再读个级;
(2)、万级的数要按个级的读法来读,再在后面加上一个“万”字;
(3)、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
4、多位数的读法法则
(1)、从高位起,一级一级往下读;
(2)、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
(3)、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
5、计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
6、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
7、除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
8、同分母分数相加减,分母不变,只把分子相加减。
9、带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
10、分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
11、异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
12、围成一个图形所有边长的总和就是这个图形的周长。
13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
14、两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
15、三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
16、已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
17、积=因数×因数 一个因数=积÷另一个因数。
18、面积计量单位及进率:
平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷
1平方千米=1000000平方米
1公顷=...
12-13
很多学生在复习高三下册数学时,因为之前没有进行系统的总结,导致复习时效率不高。下面是由留学群编辑为大家整理的“高三下册数学知识点归纳总结”,仅供参考,欢迎大家阅读本文。
高三下册数学知识点归纳1
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中x≠kπ+π/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:
1、定义法;
2、换元法;
3、待定系数法;
4、函数方程法;
5、参数法;
6、配方法
三、函数的值域的常用求法:
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;
7、直接法
四、函数的最值的常用求法:
1、配方法;
2、换元法;
3、不等式法;
4、几何法;
5、单调性法
五、函数单调性的常用结论:
1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。
2、若f(x)为增(减)函数,则-f(x)为减(增)函数。
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:
1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。
2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
高三下册数学知识点归纳2
1.数列的定义、分类与通项公式
(1)数列的定义:
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类:
分类标准类型满足条件
项数有穷数列项数有限<...
12-03
你是否正在备战期末考试呢,只要用对了复习方法,相信你能轻松通过考试,下面是由留学群编辑为大家整理的“小学四年级数学知识点归纳总结2022”,仅供参考,欢迎大家阅读本文。
小学四年级数学知识点归纳总结2022
11-30
很多同学在复习高二上册数学时,因为之前没有做过系统的总结,导致复习时效率不高。下面是由留学群编辑为大家整理的“高二上学期数学知识点归纳总结大全”,仅供参考,欢迎大家阅读本文。
高二上册数学知识点总结1
复合函数定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
复合函数常见题型
(ⅰ)已知f(x)定义域为A,求f[g(x)]的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
(ⅱ)已知f[g(x)]定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
(ⅲ)已知f[g(x)]定义域为C,求f[h(x)]的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
高二上册数学知识点总结2
1.求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。
2.求函数的极值:
设函数yf(x...
06-29
高中学习开始了,学生们要的高一数学必修一知识总结奉上。下面是由留学群小编为大家整理的“高一数学必修二知识点归纳总结”,仅供参考,欢迎大家阅读。
高一数学必修二知识点归纳总结
高一数学必修二知识点总结(一)
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等。
表示:用各顶点字母,如五棱锥。
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等。
表示:用各顶点字母,如五棱台。
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点。
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
高一数学必修二知识点总结(二...
高中以来,同学们的学习任务日益繁重,作为主科的数学更是,如何更有效的学习数学呢。以下是由留学群编辑为大家整理的“高一数学知识点归纳总结”,仅供参考,欢迎大家阅读。
高一数学知识点归纳总结
一、集合
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
u注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR| x-3>2} ,{x| x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集 含有有限个元素的集合
(2)无限集 含有无限个元素的集合
(3)空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:
有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。AÍA
②真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作A
③如果 AÍB, BÍC ,那么 AÍC
④ 如果AÍB 同时 BÍA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
u有n个元素的集合,含有2n个子集,2n-1个真子集
二、函数
1、函数定义域、值域求法综合
2.、函数奇偶性与单调性问题的解题策略
3、恒成立问题的求解策略
4、反函数的几种题型及方法
5、二次函数根的问题——一题多解
&指数函数y=a^x
a^a*a^b=a^a+b(a>0,a、b属于Q)
(a^a)^b=a^ab(a>0,a、b属于Q)
(ab)^a=a^a*b^a(a>0,a、b属于Q)
指数函数对称规律:
1、函数y=a^x与y=a^...
临近中考,同学们该如何复习数学呢,数学知识点有哪些呢。以下是由留学群编辑为大家整理的“九年级数学知识点归纳总结”,仅供参考,欢迎大家阅读。
一元一次不等式和一元一次不等式组
一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.
由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、 若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc若c<0, 则ac
不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c
三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。
四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。
五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
六、常考题型: 1、 求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。
分解因式
一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.
四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公...
成人高考数学对于大部分考生来说难度颇大,复习重点也不知道在哪。以下是由留学群编辑为大家整理的“成人高考数学知识点的归纳总结”,仅供参考,欢迎大家阅读。
第一部分代数
(一)集合和简易逻辑
1、解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号各种跟集合相关的符号含义,并能运用这些符号表示集合与集合、元素与集合的关系。
2、了解充分条件、必要条件、充分必要条件的概念。
(二)函数
1、了解函数概念,会求一些常见函数的定义域。
2、了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。
3、理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。
4、理解二次函数的概念,掌握它的图象和性质以及函数y=ax?+bx+c(a≠0)与
y=ax?(a≠0)的图象间的关系;会求二次函数的解析式及最大值或最小值,能运用二次函数的知识解决有关问题。
5、理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。
6、理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质。
(三)不等式和不等式组
1、了解不等式的性质,会解一元一次不等式、一元一次不等式组各可化为一元一次不等式组的不等式,会解一元二次不等式。会表示不等式或不等式组的解集。
2、会解形如1ax+b1≥c和1ax+b1≤c的绝对值不等式。
(四)数列
1、了解数列及其通项、前n项和的概念。
2、理解等差数列、等差中项的概念,会灵活运用等差数列的通项公式、前n项和公式解决有关问题。
3、理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题。
(五)导数
1、理解导数的概念及其几何意义。
2、掌握函数y=c(c为常数),y=c(n∈N+)的导数公式,会求多项式函数的导数。
3、了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
4、会求有关曲线的切线议程,会用导数求简单实际问题的最大值与最小值。
第二部分三角函数
(一)三角函数及其有关概念
1、了解任意角的概念,理解象限角和终边相同的角的概念。
2、了解弧度的概念,会进行弧度与角度的换算。
3、理解任意三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值。
(二)三角函数式的变换
1、掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。
数学对于参加成考的考生们有一定难度,它的知识点有哪些呢。以下是由留学群编辑为大家整理的“成人高考数学知识点归纳总结”,仅供参考,欢迎大家阅读。
第一部分·代数
(一)集合和简易逻辑
1.了解集合的意义及其表示方法,了解各个符号含义,并能运用这些符号表示集合与集合、元素与集合的关系。
2.了解充分条件、必要条件、充分必要条件的概念。
(二)函数
1.了解函数概念,会求一些常见函数的定义域。
2.了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。
3.理解一次函数、反比例函数的概念,掌握它们的图象和性质,会求它们的解析式。
4.理解二次函数的概念,掌握它的图象和性质以及函数
y=ax方+bx+c (a≠0)与y=ax方 (u≠0)的 图象间的关系,会求二次函数的解析式及最大值或最小值;能运用二次函数的知识解决有关问题。
5.理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概念、图象和性质.
6.理解对数的概念,掌握对数的运算性质.掌握对数丽数的概念、图象和性质。
(三)不等式和不等式组
1.了解不等式的性质、会解不等式(一元一次、一元二次),表世解集。会表示不等式或不等式组的解集。
2.会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式。
(四)数列
1.了解数列及其通项、前π项和的概念。
2.理解等差数列、等差中项的概念,会运用等差数列的通项公式、前n项和公式解决有关问题。
3.理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题。
(五)导数
1.理解导数的概念及其几何意义;
2.掌握函数y=c (c为常数),y=x" (n∈N+)的导数公式,会求多项式函数的导数。
3.了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
4.会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值。
第二部分·三角
(一)三角函数及其有关概念
1.了解任意角的概念,理解象限角和终边相同的角的概念。
2.了解弧度的概念,会进行弧度与角度的换算。
3.理解任意角三角函数的概念,了解三角函数在各象限的符号和特殊角的三角函数值。
(二)三角函数式的变换
1.掌握同角三角函数间的基本关系式、诱导公式,会运用它们进行计算、化简和证明。
2.掌握两角和、两角差、二倍角的正弦、余弦、正切的公式,会用它们进行计算、化简和证明。
(三)三角函数的图象和性质
1.掌握正弦函数、余弦函数的图象和性质,会用这两个函数的性质(定义域、值域、周期性、奇偶性和单调性)解决有关问题。
2.了解正切丽数的图象和性质。
3.会求函数...
数学知识点归纳总结推荐访问