留学群专题频道数学轴对称栏目,提供与数学轴对称相关的所有资讯,希望我们所做的能让您感到满意!
留学群为您整理“中考数学《轴对称》考点汇总”,欢迎阅读参考,更多精彩内容请继续关注本网站相关栏目发布的信息。
中考数学《轴对称》考点汇总 | |
1 | 中考数学《轴对称》考点:轴对称变换 |
2 | 中考数学《轴对称》考点:轴对称与轴对称图形的性质 |
3 | 中考数学《轴对称》知识点:轴对称与轴对称图形 |
4 |
留学群为您整理“中考数学《轴对称》知识点:常见图形的对称轴与画法”,欢迎阅读参考,更多精彩内容请继续关注本网站相关栏目发布的信息。
中考数学《轴对称》知识点:常见图形的对称轴与画法
常见图形的对称轴:
①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。
②角有一条对称轴,是角平分线所在的直线。
③等腰三角形有一条对称轴,是顶角平分线所在的直线。
④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。
⑤矩形有两条对称轴,是相邻两边的垂直平分线。
⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。
⑦菱形有两条对称轴,是对角线所在的直线。
⑧等腰梯形有一条对称轴,是两底垂直平分线。
⑨正多边形有与边数相同条的对称轴。
⑩圆有无数条对称轴,是任何一条直径所在的直线。
常见图形对称轴的画法:
①找出一对对称点
②连对称点线段
③做出对称点所连线段的垂直平分线。
推荐阅读:
...
留学群为您整理“中考数学《轴对称》考点:线段的垂直平分线”,欢迎阅读参考,更多精彩内容请继续关注本网站相关栏目发布的信息。
中考数学《轴对称》考点:线段的垂直平分线
(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)。
(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合。
推荐阅读:
...
留学群为您整理“中考数学《轴对称》知识点:图形的平移定义”,欢迎阅读参考,更多精彩内容请继续关注本网站相关栏目发布的信息。
中考数学《轴对称》知识点:图形的平移定义
(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。
(2)平移的性质:
①对应点的连线平行(或共线)且相等
②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)
③对应角相等,对应角两边分别平行,且方向一致。
(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。
(4)平移的条件:图形的原来位置、方向、距离
(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。
推荐阅读:
...
留学群为您整理“中考数学《轴对称》考点:特殊的轴对称图形”,欢迎阅读参考,更多精彩内容请继续关注我们的网站(www.liuxuequn.com)。
中考数学《轴对称》考点:特殊的轴对称图形
线段的垂直平分线
①定义:垂直并且平分已知线段的直线叫做线段的垂直平分线或中垂线
②性质:a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;b、到线段两端点距离相等的点在线段的垂直平分线上;c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线。
角平分线的性质
①角平分线上的点到已知角两边的距离相等
②到已知角两边距离相等的点在已知角的角平分线上
③角是轴对称图形,角平分线所在的直线是该角的对称轴。
推荐阅读:
...
留学群为您整理“中考数学《轴对称》知识点:坐标系中的轴对称变换与中心对称变换”,欢迎阅读参考,更多精彩内容请继续关注我们的网站(www.liuxuequn.com)。
中考数学《轴对称》知识点:坐标系中的轴对称变换与中心对称变换
点P(x,y)关于x轴对称的点P1的坐标为(x,-y),关于y轴对称的点P2的坐标为(-x,y)。
关于原点对称的点的坐标P3的坐标是(-x,-y)这个规律也可以记为:关于y轴(x轴)对称的点的纵坐标(横坐标)相同,横坐标(纵坐标)互为相反数。
关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以-1。
推荐阅读:
...
留学群为您整理“中考数学《轴对称》考点:几种常见的轴对称图形和中心对称图形”,欢迎阅读参考,更多精彩内容请继续关注我们的网站(www.liuxuequn.com)。
中考数学《轴对称》考点:几种常见的轴对称图形和中心对称图形
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆
对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;
中心对称图形:线段 、平行四边形、菱形、矩形、正方形、圆
对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
推荐阅读:
...
留学群为您整理“中考数学《轴对称》知识点:轴对称与中心对称的区别与联系”,欢迎阅读参考,更多精彩内容请继续关注我们的网站(www.liuxuequn.com)。
中考数学《轴对称》知识点:轴对称与中心对称的区别与联系
轴对称 有一条对称轴——直线 图形沿对称轴对折(翻折180o)后重合 对称点的连线被对称轴垂直平分
中心对称 有一个对称中心——点 图形绕对称中心旋转180 o后重合 对称点连线经过对称中心,且被对称中心平分
推荐阅读:
...
留学群为您整理“中考数学《轴对称》考点:中心对称与中心对称图形”,欢迎阅读参考,更多精彩内容请继续关注我们的网站(www.liuxuequn.com)。
中考数学《轴对称》考点:中心对称与中心对称图形
1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
3.中心对称的性质:
(1)关于中心对称的两个图形是全等形;
(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;
(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
推荐阅读:
...
留学群为您整理“中考数学《轴对称》知识点:轴对称与轴对称图形”,欢迎阅读参考,更多精彩内容请继续关注我们的网站(www.liuxuequn.com)。
中考数学《轴对称》知识点:轴对称与轴对称图形
1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:
(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.
(2)性质:①在角的平分线上的点到这个角的两边的距离相等.
②到一个角的两边距离相等的点,在这个角的平分线上.
注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质与判定:
性质:
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;
(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;
③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
7.等边三角形的性质与判定:
性质:(1)等边三角形的三个角都相等,并且每个角都等于60°;
(2)等边三角形具有等腰三角形的...
数学轴对称推荐访问