留学群专题频道正方体的表面积栏目,提供与正方体的表面积相关的所有资讯,希望我们所做的能让您感到满意!
11-23
正方体是数学几何中一个重要的图形,在考试中也是经常出现题目。下面是由留学群编辑为大家整理的“正方体的表面积公式是什么 怎么计算”,仅供参考,欢迎大家阅读本文。
正方体的表面积
由于正方体的表面由六个面积相同的正方形组成,所有立体图形外面的面积之和叫做它的表面积。如果假设正方体的棱长为a,那么:
一个面即正方形的面积为a²;
而六个面即正方体的表面积就是6a²。
正方体的体积
正方体的体积(或叫做正方体的容积)=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a=a³
也可以用正方体的体积=底面积×高计算。
同时,正方体的体对角线也等于:体对角线的平方=长的平方+宽的平方+高的平方。
拓展阅读:正方体的性质
1.6个面每组相对的面完全相同。
2.12条棱按长度可分为三组,每一组有4条棱。
3.有8个顶点。每个顶点连接三条棱。三条棱分别叫做长,宽,高。
4.相邻的两条棱互相垂直。
正方体的表面积怎么求呢?还不清楚的小伙伴赶紧来看看吧!下面由留学群小编为你精心准备了“正方体的表面积怎么求”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!
正方体的表面积怎么求
1、因为6个面全部相等,所以正方体的表面积=底面积×6=棱长×棱长×6。
2、正方体是由6个正方形面组成的正多面体,故又称正六面体、正立方体。它有12条棱(边)和8个顶(点),是五个柏拉图立体之一。
拓展阅读:正方体的动态定义
由一个正方形垂直于正方形所在面的方向平移该正方形的边长而得到的立体图形。
正方体的特征
正方体有8个顶点,每个顶点连接三条棱;正方体有12条棱,每条棱长度相等;正方体有6个面,每个面面积相等。
正方体的体积怎么计算
正方体体积=底面积*高=棱长*棱长*棱长
正方体的物品有哪些
魔方、骰子、方形积木、方形纸盒、豆腐、木箱、方形积木、围棋棋墩、纸巾盒、石膏正方体、啤酒箱、色子等。
长方体和正方体的相同点和不同点
长方体、正方体的相同点:都有8个顶点,6个面,12条棱。
长方体、正方体的不同点:长方体相对的两个面面积相等,正方体6个面的面积都相等;长方体相对的4条棱的长度相等,正方体12条棱的长度都相等。
...12-14
教学目标
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重难点
掌握长方体和正方体表面积的计算方法。
教学工具
长方体、正方体纸盒,剪刀,投影仪
教学过程
【复习导入】
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
【新课讲授】
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7&time...
留学群教师资格考试网为您整理“教师资格证小学数学说课:长方体和正方体的表面积”,希望对您有所帮助!
《长方体和正方体的表面积》说课
一、 学情分析
1、教材分析:
浙教版小学数学第十册第一单元《长方体和立方体的表面积》是本单元的第三课时。“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,本课时主要教学长方体、正方体表面积的概念和计算方法。教材先通过把一个长方体或正方体纸盒的6个面展开,帮助学生认识表面积的概念。这样可以把表面积的概念与刚刚建立起来的长方体和正方体的特征很好的联系起来,为下面学习计算表面积做好准备。接着,通过例1教学长方体表面积的计算方法。然后安排“试一试”学习立方体表面积的计算方法。
关于长方体表面积的计算,教材中没有给出计算公式,而是启发学生用不同的方法列式计算,这样安排有利于他们更好的掌握表面积的概念及有关计算,有利于更好的发展学生的空间观念。
2、学习者分析:
长方体和正方体的表面积这部分知识是在学生掌握了长方形与正方形的面积计算,并对长方体与正方体的特征有了初步认识的基础上进行教学的,即学生已经明确了长方体与正方体都有6个面,而且长方体相对的面的面积相等,正方体6个面的面积都相等的基础上教学的。计算长方体和正方体的表面积在生活中有广泛的应用。通过这部分内容的学习,还可以加深学生对长方体和正方体特征的的理解,发展他们的空间观念。
二、教学目标及重难点
教学目标:
1、理解长方体和正方体表面积的意义。
2、理解并掌握长方体和正方体表面积的计算方法。
3、培养和发展学生的空间观念。
教学重点:
长方体、正方体表面积的意义和计算方法。
教学难点:
确定长方体每一个面的长和宽。
三、教学设想
1、创设问题情景,激发学习欲望。
根据本课教材的特点和学生实际,新课伊始,我创设了“纸箱厂要制作一种长8分米,宽2分米,高4分米的长方体包装盒和一种棱长4分米的正方体包装盒.哪种包装盒要用的硬纸板少?”这一问题情景,接着问:“长方体和正方体的哪些地方要用硬纸板?”既激发了学生探究的兴趣,又对“长方体或正方体的表面积”这一概念建立清晰的表象,为学习表面积的计算方法做好充分准备。
2、借助教学媒体,提高学习有效性。
“长方体和正方体”这一单元是学生系统学习立体图形知识的开始,因此在教学中尽可能丰富他们的感性认识,建立清晰的表象。我通过提问“这个长方体的表面积能一眼全看到吗?有什么办法能一眼全看到?”引导学生思考把立体图形得到平面图形。之后由多媒体电脑演示展开过程,要求学生在展开后的图形中找到“上下前后左右”6个面。强化空间观念,增加学习趣味。
在此基础上“提问”:每个面的长和宽与长方体的长、宽、高有什么关系?让学生围绕本课难点问题进行尝试解决问题,而教师只在关键处进行点拨、引导。体现学生的主体地位,培养学生独立解决问题的能力。学生通过自主探索,自己发现长方体表面积的计算方法。但由于学生的认知水平有差异,允许各类学生提出自己的方法,然后通过比较,进而到表面...
正方体的表面积推荐访问