留学群高一数学知识归纳

留学群专题频道高一数学知识归纳栏目,提供与高一数学知识归纳相关的所有资讯,希望我们所做的能让您感到满意!

2022高一数学知识点总结大全(非常全面)

 

  很多同学在学习高一数学时,因为之前没有做过系统的总结,导致复习的效率不高。下面是由留学群编辑为大家整理的“2022高一数学知识点总结大全(非常全面)”,仅供参考,欢迎大家阅读本文。

  高一数学知识点重点总结归纳1

  圆锥曲线性质:

  一、圆锥曲线的定义

  1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.

  2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.

  3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.

  二、圆锥曲线的方程

  1.椭圆:+ =1(a>b>0)或+ =1(a>b>0)(其中,a2=b2+c2)

  2.双曲线:- =1(a>0,b>0)或- =1(a>0,b>0)(其中,c2=a2+b2)

  3.抛物线:y2=±2px(p>0),x2=±2py(p>0)

  三、圆锥曲线的性质

  1.椭圆:+ =1(a>b>0)

  (1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e= ∈(0,1)

  2.双曲线:- =1(a>0,b>0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e= ∈(1,+∞)(5)准线:x=± (6)渐近线:y=± x

  3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1

  高一数学知识点重点总结归纳2

  集合与元素

  一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

  例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;

  而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

  班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

  解集合问题的关键

  解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。

  高一数学知识点重点总结归纳3

  一:函数及其表示

  知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等

  1. 函数与映射的区别:

  2. 求函数定义域

  常见的用解析式表示的函数f(x)的定义域可以归纳如下:

  ①当f(x)为整式时,函数的定义域为R.

 ...

高一数学知识点总结大全(非常全面)

 

  很多同学在复习高一数学时,因为没有做过系统的总结,导致复习的效率不高。下面是由留学群编辑为大家整理的“高一数学知识点总结大全(非常全面)”,仅供参考,欢迎大家阅读本文。

  高一数学知识点汇总1

  函数的有关概念

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

  注意:

  1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  u 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

  2.值域 : 先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3. 函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

  (2) 画法

  A、 描点法:

  B、 图象变换法

  常用变换方法有三种

  1) 平移变换

  2) 伸缩变换

  3) 对称变换

  4.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  (3)区间的数轴表示.

  5.映射

  高一数学知识点汇总2

  集合

  (1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

  (2)注意:讨论的时候不要遗忘了的情况。

  (3)第二部分函数与导数

  1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

  2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法。

  3.复合函数的有关问题

  (1)复合函数定义域求法: