留学群高中数学知识点大全

留学群专题频道高中数学知识点大全栏目,提供与高中数学知识点大全相关的所有资讯,希望我们所做的能让您感到满意!

高中数学重点知识点总结大全归纳

 

  在复习高中数学的过程中,很多同学没有对数学知识及时总结梳理记忆,导致复习效率不高。下面是由留学群编辑为大家整理的“高中数学重点知识点总结大全归纳”,仅供参考,欢迎大家阅读本文。

  高中数学重点知识点总结大全归纳

  1、基本初等函数

  正弦函数 sinθ=y/r

  余弦函数 cosθ=x/r

  正切函数 tanθ=y/x

  余切函数 cotθ=x/y

  正割函数 secθ=r/x

  余割函数 cscθ=r/y

  2、同角三角函数间的平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、同角三角函数间积的关系:

  sinα=tanα*cosα

  cosα=cotα*sinα

  tanα=sinα*secα

  cotα=cosα*cscα

  secα=tanα*cscα

  cscα=secα*cotα

  4、同角三角函数间倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  5、利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

  反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间)。

  (2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间)。

  (3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

  6、求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域。

  (2)求导数f(x)。

  (3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况。

  (4)检查f(x)的符号并由表格判断极值。

  7、求函数的值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

  求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值。

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

...