留学群高中数学知识点归纳

留学群专题频道高中数学知识点归纳栏目,提供与高中数学知识点归纳相关的所有资讯,希望我们所做的能让您感到满意!

高二上学期数学知识点归纳(非常实用)

 

  对数学知识点进行系统地总结,查漏补缺,再去练习,能够提高自己的学习效率。下面是由留学群编辑为大家整理的“高二上学期数学知识点归纳(非常实用)”,仅供参考,欢迎大家阅读本文。

  高二数学上学期知识点总结1

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、逻辑联结词:

  ⑴且(and) :命题形式 p q; p q p q p q p

  ⑵或(or):命题形式 p q; 真 真 真 真 假

  ⑶非(not):命题形式 p . 真 假 假 真 假

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号 表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

  高二数学上学期知识点总结2

  一定义

  集合是高中数学中最原始的不定义的概念,只给出描述性的说明。某些确定的且不同的对象集在一起就成为集合。组成集合的对象叫做元素。

  二集合的抽象表示形式

  用大写字母A,B,C??表示集合;用小写字母a,b,c表示元素。

  三元素与集合的关系

  有属于,不属于关系两种。元素a属于集合A,记作aA;元素a不属于集合A,记作aA。

  四几种集合的命名

  有限集:含有有限个元素的集合;无限集:含有无限个元素的集合;空集:不包含任何元素的集合叫做空集,用表示;自然数集:N;正整数集:N_或N+;整数集:Z;有理数集:Q;实数集:R。

  五集合的表示方法

  (一)列举法:把元素一一列举在大括号内的表示方法,例如:{a,b,c}。注意:凡是以列举法形式出现的集合,往往考察元素的互异性。

  (二)描述法:有以下两种描述方式

  1.代号描述:【例】方程2x3x+2=0的所有解组成的集合,可表示为{x|x2-3x+2=0}。x是集合中元素的代号,竖线也可以写成冒号或者分号,竖线后面的式子的作用是描述集合中的元素符合的条件。

  2.文字描述:将说明元素性质的一句话写在大括号内。【例】{大于2小于5的整数};描述法表示的集合一旦出现,首先需要分析元素的意义,也就说要判断元素到底是什么。

  (三)韦恩图法:用图形表示集合定义了两个集合之间的所有关系。子集有两种极限...

高中数学必修二知识归纳总结

 

  很多同学在复习高中数学必修二的知识点时,因为没有做过系统的总结,导致复习效率不高。下面是由留学群编辑为大家整理的“高中数学必修二知识归纳总结”,仅供参考,欢迎大家阅读本文。

  数学必修二的知识点总结

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  ②过两点的直线的斜率公式:

  注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (3)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (4)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线(是不全为0的常数)的直线系:(C为常数)

  (二)垂直直线系

  垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

  (三)过定点的直线系

  (ⅰ)斜率为k的直线系:,直线过定点;

  (ⅱ)过两条直线,的交点的直线系方程为

  (为参数),其中直线不在直线系中。

  (6)两直线平行与垂直

  (7)两条直线的交点

  相交

  交点坐标即方程组的一组解。

  方程组无解;方程组有无数解与重合

  (9)点到直线距离公式:一点到直线的距离

  (10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (1)标准方程,圆心,半径为r;

  (2)一般方程

  当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点;当时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为,则有;;

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

<...

2022高二数学知识点总结大全

 

  很多同学在复习高二数学时需,复习效率不高,这是因为没有做系统的总结。下面是由留学群编辑为大家整理的“2022高二数学知识点总结大全”,仅供参考,欢迎大家阅读本文。

  高二年级数学重要知识点归纳

  1、科学记数法:把一个数字写成的形式的记数方法。

  2、统计图:形象地表示收集到的数据的图。

  3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。

  4、条形统计图:清楚地表示出每个项目的具体数目。

  5、折线统计图:清楚地反映事物的变化情况。

  6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。

  7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。

  8、事件的概率:可用事件结果除以所以可能结果求得理论概率。

  9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。

  10、游戏双方公平:双方获胜的可能性相同。

  11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。

  13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。

  14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。

  15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。

  16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。

  17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。

  18、频数:每次对象出现的次数。

  19、频率:每次对象出现的次数与总次数的比值。

  20、级差:一组数据中数据与最小数据的差,刻画数据的离散程度。

  21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度。

  21、标准方差:方差的算数平方根刻画数据的离散程度。

  23、一组数据的级差、方差、标准方差越小,这组数据就越稳定。

  24、利用树状图或表格方便求出某事件发生的概率。

  25、两个对比图像中,坐标轴上同一单位长度表示的意义一致,纵坐标从0开始画。

  高二数学必修五知识点

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1)。

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出...

高中数学知识点归纳总结

 

  想要了解高中数学知识点的小伙伴,赶紧来瞧瞧吧!下面由留学群小编为你精心准备了“高中数学知识点归纳总结”,本文仅供参考,持续关注本站将可以持续获取更多资讯!

  高中数学知识点归纳总结

  1.等差数列的定义

  如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  2.等差数列的通项公式

  若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d。

  3.等差中项

  如果A=(a+b)/2,那么A叫做a与b的等差中项。

  4.等差数列的常用性质

  (1)通项公式的推广:an=am+(n-m)d(n,m∈N_)。

  (2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_)。

  (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列。

  (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。

  (5)S2n-1=(2n-1)an。

  (6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项)。

  注意:

  一个推导

  利用倒序相加法推导等差数列的前n项和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2。

  两个技巧

  已知三个或四个数组成等差数列的一类问题,要善于设元。

  (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…。

  (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元。

  四种方法

  等差数列的判断方法

  (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

  (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通项公式法:验证an=pn+q;

  (4)前n项和公式法:验证Sn=An2+Bn。

  注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列。

  拓展阅读:高中数学选择题解题技巧

  1、直接解题法(直接法)

  直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。涉及概念、性质的辨...