2016考研数学复习:解线性方程组
2016考研数学复习:解线性方程组 线性方程组的三种形式包括原始形式、矩阵形式、向量形式,高斯消元法是最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:(1)把某个方程的k倍加到另外一个方程上去;(2)交换某两个方程的位置;(3)用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。因此在求解线性方程组时只需对系数矩阵和增广矩阵进行初等变换。 高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。 阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r 在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的... [ 查看全文 ]2016考研数学复习:解线性方程组的相关文章