高中数学选修1-1《全称量词与存在量词》教案
高中数学选修1-1《全称量词与存在量词》教案 导学目标: 1.了解逻辑联结词“或、且、非”的含义. 2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定. 自主梳理 1.逻辑联结词 命题中的或,且,非叫做逻辑联结词.“p且q”记作p∧q,“p或q”记作p∨q,“非p”记作綈p. 2.命题p∧q,p∨q,綈p的真假判断 p q p∧q p∨q 綈p 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 3.全称量词与存在量词 (1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题,可用符号简记为∀x∈M,p(x),它的否定∃x∈M,綈p(x). (2)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题,可用符号简记为∃x∈M,p(x),它的否定∀x∈M,綈p(x). 自我检测 1.命题“∃x∈R,x2-2x+1<0... [ 查看全文 ]高中数学选修1-1《全称量词与存在量词》教案的相关文章
高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案
高中数学必修5《二元一次不等式(组)与简单的线性规划问题》教案 一、教学内容分析 本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与最优解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。突出体现了优化思想,与数形结合的思想。本小节是利用数...[ 查看全文 ]